scholarly journals Integrated Transcriptional Profiling Analysis and Immune-Related Risk Model Construction for Intracranial Aneurysm Rupture

2021 ◽  
Vol 15 ◽  
Author(s):  
Dezhi Shan ◽  
Xing Guo ◽  
Guozheng Yang ◽  
Zheng He ◽  
Rongrong Zhao ◽  
...  

Intracranial aneurysms (IAs) may cause lethal subarachnoid hemorrhage upon rupture, but the molecular mechanisms are poorly understood. The aims of this study were to analyze the transcriptional profiles to explore the functions and regulatory networks of differentially expressed genes (DEGs) in IA rupture by bioinformatics methods and to identify the underlying mechanisms. In this study, 1,471 DEGs were obtained, of which 619 were upregulated and 852 were downregulated. Gene enrichment analysis showed that the DEGs were mainly enriched in the inflammatory response, immune response, neutrophil chemotaxis, and macrophage differentiation. Related pathways include the regulation of actin cytoskeleton, leukocyte transendothelial migration, nuclear factor κB signaling pathway, Toll-like receptor signaling pathway, tumor necrosis factor signaling pathway, and chemokine signaling pathway. The enrichment analysis of 20 hub genes, subnetworks, and significant enrichment modules of weighted gene coexpression network analysis showed that the inflammatory response and immune response had a causal relationship with the rupture of unruptured IAs (UIAs). Next, the CIBERSORT method was used to analyze immune cell infiltration into ruptured IAs (RIAs) and UIAs. Macrophage infiltration into RIAs increased significantly compared with that into UIAs. The result of principal component analysis revealed that there was a difference between RIAs and UIAs in immune cell infiltration. A 4-gene immune-related risk model for IA rupture (IRMIR), containing CXCR4, CXCL3, CX3CL1, and CXCL16, was established using the glmnet package in R software. The receiver operating characteristic value revealed that the model represented an excellent clinical situation for potential application. Enzyme-linked immunosorbent assay was performed and showed that the concentrations of CXCR4 and CXCL3 in serum from RIA patients were significantly higher than those in serum from UIA patients. Finally, a competing endogenous RNA network was constructed to provide a potential explanation for the mechanism of immune cell infiltration into IAs. Our findings highlighted the importance of immune cell infiltration into RIAs, providing a direction for further research.

2021 ◽  
Vol 12 ◽  
Author(s):  
Shuang Gao ◽  
Ye Jin ◽  
Hongmei Zhang

WNT signaling pathway inhibitor Dickkopf-1 (DKK1) is related to cancer progression; however, its diagnostic and prognostic potential have not been investigated in a pan-cancer perspective. In this study, multiple bioinformatic analyses were conducted to evaluate therapeutic value of DKK1 in human cancers. The Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression (GTEx) project served as data resources. The Wilcoxon rank test was performed to evaluate the expression difference of DKK1 between cancer tissues and normal tissues. A Kaplan-Meier curve and Cox regression were used for prognosis evaluation. Single-sample gene set enrichment analysis (ssGSEA) was used to evaluate the association of DKK1 expression with the immune cell infiltration. The potential function of DKK1 was explored by STRING and clusterProfiler. We found that the expression level of DKK1 is significantly different in different cancer types. Importantly, we demonstrated that DKK1 is an independent risk factor in ESCA, LUAD, MESO, and STAD. Further analysis revealed that DKK1 had a large effect on the immune cell infiltration and markers of certain immune cells, such as Th1 and Th2 cells. PPI network analysis and further pathway enrichment analysis indicated that DKK1 was mainly involved in the WNT signaling pathway. Our findings suggested that DKK1 might serve as a marker of prognosis for certain cancers by affecting the WNT signaling pathway and tumor immune microenvironment.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Li Zhang ◽  
Yunlong Yang ◽  
Dechun Geng ◽  
Yonghua Wu

Background. Osteoporosis is characterized by low bone mass, deterioration of bone tissue structure, and susceptibility to fracture. New and more suitable therapeutic targets need to be discovered. Methods. We collected osteoporosis-related datasets (GSE56815, GSE99624, and GSE63446). The methylation markers were obtained by differential analysis. Degree, DMNC, MCC, and MNC plug-ins were used to screen the important methylation markers in PPI network, then enrichment analysis was performed. ROC curve was used to evaluate the diagnostic effect of osteoporosis. In addition, we evaluated the difference in immune cell infiltration between osteoporotic patients and control by ssGSEA. Finally, differential miRNAs in osteoporosis were used to predict the regulators of key methylation markers. Results. A total of 2351 differentially expressed genes and 5246 differentially methylated positions were obtained between osteoporotic patients and controls. We identified 19 methylation markers by PPI network. They were mainly involved in biological functions and signaling pathways such as apoptosis and immune inflammation. HIST1H3G, MAP3K5, NOP2, OXA1L, and ZFPM2 with higher AUC values were considered key methylation markers. There were significant differences in immune cell infiltration between osteoporotic patients and controls, especially dendritic cells and natural killer cells. The correlation between MAP3K5 and immune cells was high, and its differential expression was also validated by other two datasets. In addition, NOP2 was predicted to be regulated by differentially expressed hsa-miR-3130-5p. Conclusion. Our efforts aim to provide new methylation markers as therapeutic targets for osteoporosis to better treat osteoporosis in the future.


2020 ◽  
Author(s):  
Jukun Song ◽  
Song He ◽  
Wei Wang ◽  
Jiaming Su ◽  
Dongbo Yuan ◽  
...  

Abstract Background Immune infiltration of Prostate cancer (PCa) was highly related to clinical outcomes. However, previous works failed to elucidate the diversity of different immune cell types that make up the function of the immune response system. The aim of the study was to uncover the composition of TIICs in PCa utilizing the CIBERSORT algorithm and further reveal the molecular characteristics of PCa subtypes. Method In the present work, we employed the CIBERSORT method to evaluate the relative proportions of immune cell profiling in PCa and adjacent samples, normal samples. We analyzed the correlation between immune cell infiltration and clinical information. The tumor-infiltrating immune cells of the TCGA PCa cohort were analyzed for the first time. The fractions of 22 immune cell types were imputed to determine the correlation between each immune cell subpopulation and clinical feature. Three types of molecular classification were identified via R-package of “CancerSubtypes”. The functional enrichment was analyzed in each subtype. The submap and TIDE algorithm were used to predict the clinical response to immune checkpoint blockade, and GDSC was employed to screen chemotherapeutic targets for the potential treatment of PCa. Results In current work, we utilized the CIBERSORT algorithm to assess the relative proportions of immune cell profiling in PCa and adjacent samples, normal samples. We investigated the correlation between immune cell infiltration and clinical data. The tumor-infiltrating immune cells in the TCGA PCa cohort were analyzed. The 22 immune cells were also calculated to determine the correlation between each immune cell subpopulation and survival and response to chemotherapy. Three types of molecular classification were identified. Each subtype has specific molecular and clinical characteristics. Meanwhile, Cluster I is defined as advanced PCa, and is more likely to respond to immunotherapy. Conclusions Our results demonstrated that differences in immune response may be important drivers of PCa progression and response to treatment. The deconvolution algorithm of gene expression microarray data by CIBERSOFT provides useful information about the immune cell composition of PCa patients. In addition, we have found a subtype of immunopositive PCa subtype and will help to explore the reasons for the poor effect of PCa on immunotherapy, and it is expected that immunotherapy will be used to guide the individualized management and treatment of PCa patients.


2021 ◽  
Author(s):  
Yi He ◽  
Haiyang Zhang ◽  
Yan Zhang ◽  
Peiyun Wang ◽  
Kegan Zhu ◽  
...  

Abstract Background: Stomach adenocarcinoma (STAD) is the common cancer and ranks third leading cause of cancer death worldwide. TGF‑β receptor 1 (TGFBR1), serving important roles in the TGF‑β family, the mechanisms whereby TGFβ2 governs tumor progression, immune cell infiltration and its correlation with tumor microenvironment (TME) in STAD remains unintelligible. Methods: First, we used the data in the TCGA, GEPIA, and HPA databases to explore the expression level of TGFBR1 in STAD, the correlation between TGFBR1 expression and the clinical features of STAD, its impact on the survival of STAD. Subsequently, a receiver operating characteristic (ROC) curve and nomogram were constructed and LASSO (the Least Absolute Shrinkage and Selection Operator)-selected features were used to build the TGFBR1 prognostic signature. Moreover, GSEA enrichment analysis is used to find the potential molecular mechanism of TGFBR1 to promote the malignant process of STAD. Finally, we further explored the influence of theTGFBR1 expression on the immune microenvironment of STAD patients through the TIMER2.0 and GEPIA database.Results: In our study, TGFBR1 expression was significantly elevated in patients with STAD and positively co-expression with pathologic stage, lymph node metastases (LNM) stage and histopathological grade of STAD. LASSO-selected features were used to build the TGFBR1 prognostic signature. 9 factors with non-zero coefficients were identified. The corresponding risk scores were computed, according to the following formula: Risk score = (-0.2914) *DIXDC1+ (0.1113) *STON1-GTF2A1L+(0.3092) *FERMT2+(-0.0146) *BHMT2+(0.1798) *ABCC9+(0.068) *MSRB3+(-0.1007) *SYNC+(-0.0891) *SORBS1+(0.0828) *TGFBR1.Survival analysis revealed that patients with high TGFBR1 had shorter OS, FP, and PPS. Multivariate Cox analysis revealed TGFBR1 was an independent prognostic factor for OS in STAD. The receiver operating characteristic (ROC) analysis suggested high diagnostic value with the area under curve (AUC) of TGFBR1 was 0.739, and a prognostic nomogram involving age, T, N, M classification, pathologic stage, primary therapy outcome, histologic grade and TGFBR1 to predict the 1, 3, 5-year OS was constructed. GSEA revealed that high TGFBR1 expression was correlated with pathway in cancer, MAPK signaling pathway, NOTCH signaling pathway, focal adhesion and VEGF-C production. ssGSEA showed that TGFBR1 is correlated with NK cells, Tem and Th17 cells. Furthermore, elevated TGFBR1 expression was found to be significantly correlated with several immune checkpoint and immune markers associated with immune cell subsets. Conclusion: In summary, TGFBR1 could be a prognostic biomarker and an important regulator of immune cell infiltration in STAD. The present study revealed the probable underlying molecular mechanisms of TGFBR1 in STAD and provided a potential target for improving the prognosis.


2021 ◽  
Author(s):  
Rongxin Chen ◽  
Qing Han ◽  
Huale Zhang ◽  
Jianying Yan

Abstract Background Preeclampsia (PE) is a complex multisystem disease and its etiology remains unclear. The aim of this study was to identify potential immune-related diagnostic genes for PE, analyze the role of immune cell infiltration in PE, and explore the mechanism underlying PE-induced disruption of immune tolerance at the maternal-fetal interface. Methods We used the PE dataset GES25906 from Gene Expression Omnibus and immune-related genes from ImmPort database. The differentially expressed genes (DEGs) were identified using the “limma” package, and the differentially expressed immune-related genes (DEIGs) were extracted from the DEGs and immune-related genes using Venn diagrams. The potential functions of DEIGs were determined by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses. Furthermore, the protein–protein interaction network was obtained from the STRING database, and it was visualized using Cytoscape software. Least absolute shrinkage and selection operator logistic regression was used to verify the diagnostic markers of PE and build a predicting model. The model was validated using datasets GSE66273 and GSE75010. Finally, CIBERSORT was used to evaluate the infiltration of immune cells in PE tissues. Results Six genes (ACTG1, ENG, IFNGR1, ITGB2, NOD1, and SPP1) enriched in Th17 cell differentiation, cytokine-cytokine receptor interaction, innate immune response, and positive regulation of MAPK cascade pathways were identified, and a predicting model was built. Datasets GSE66273 and GSE75010 were used to validate the model, and the area under the curve was 0.8333 and 0.8107, respectively. Immune cell infiltration analysis revealed an increase in plasma cells and gamma delta T cells and a decrease in resting natural killer cells in the high score group according to the predictive model risk values. Conclusions We developed a risk model to predict PE and proved that immune imbalance at the maternal-fetal interface plays a key role in the pathogenesis of PE.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1482-1482
Author(s):  
Wulin Aerbajinai ◽  
Kyung Chin ◽  
Hyun Woo Lee ◽  
Jianqiong Zhu ◽  
Griffin P. Rodgers

Abstract Abstract 1482 Toll-like receptor 4 (TLR4) plays a critical role in innate immunity that recognize pathogenic molecules and trigger inflammatory response. However, excessive activation of TLR4 activation may contribute to pathogenesis of autoimmune and inflammatory diseases. Therefore, the negative regulation of TLR4-triggered inflammatory response attracts much attention in recent years. Activation of TLR4 signaling pathways by lipopolysaccharide (LPS) leads to the production of a broad array of cytokines and mediators that coordinate the immune response in macrophages. Glia maturation factor gamma (GMFG), a member of the ADF/cofilin family of proteins that regulate actin cytoskeleton reorganization, is preferentially expressed in inflammatory cells, but its function in macrophages immune response remains unclear. In this study, we investigated whether GMFG participates in the molecular events underlying the inflammatory reaction to LPS in macrophages by knockdown of GMFG using small-interfering RNA approach. We show here that knockdown of GMFG significantly enhanced LPS-induced production of proinflammatory cytokines and chemokines, including TNF-alpha, IL-1beta, IL-8, and MCP-1 in human peripheral blood monocytes-derived macrophage as determined by quantitative real time-PCR and confirmed by enzyme-linked immunosorbent assay. Silencing of GMFG expression potentiates LPS-induced activation of p38, ERK1/2 and NF-kappaB signaling pathways by Western blot analysis. Moreover, luciferase assay revealed that gene silencing of GMFG promoted LPS-induced NF-kappaB activity for ∼2.5- to 4-fold. Furthermore, we found that TLR4 protein expression level were higher in GMFG-silenced macrophage compared with that of the control siRNA-transfected macrophages after stimulated with LPS for 1 hour. These results suggest that GMFG negatively regulation of TLR4 signaling-induced inflammatory cytokines by modulation of TLR4 expression levels and its down-stream NF-kappaB and p38 MAPK signaling pathway. In summary, we report that GMFG, in macrophage, function as a novel negative regulator that participates in the regulation of TLR4-signaling pathway, implicating that macrophage-specific modulation of GMFG may be beneficial in the treatment of inflammation as well as autoimmune disease. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Author(s):  
Xiaofen Pan ◽  
Xingkui Tang ◽  
Minling Liu ◽  
Xijun Luo ◽  
Mengyuan Zhu ◽  
...  

Abstract BackgroundTumor microenvironment consists of tumor cells, immune cells and other matric components. Tumor infiltration immune cells are associated with prognosis. But all the current prognosis evaluation system dose not take tumor immune cells other matrix component into consideration. In the current study, we aimed to construct a prognosis predictive model based on tumor microenvironment.MethodCIBERSORT and ESTIMATE algorithms were used to reveal the immune cell infiltration landscape of colon cancer. Patients were classified into three clusters by ConsensusClusterPlus algorithm. Immune cell infiltration (ICI) scores of each patient were determine by principal-component analysis. Patients were divided to high and low ICI score groups. Survival, gene expression and somatic mutation of the two groups were compared.ResultsPatients with no lymph node invasion, no metastasis, T1-2 disease and stage I-II had higher ICI scores. Calcium signaling pathway, leukocyte transendothelial migration pathway, MAPK signaling pathway, TGF β pathway, and WNT signaling pathway were enriched in high ICI score group. Immune-checkpoint genes and immune-activity associated genes were significantly decreased in high ICI score. Patients in high ICI score group had better survival than low ICI score group. Prognostic value of ICI score was independent of TMB.ConclusionICI score might serve as an independent prognostic biomarker in colon cancer.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Chen Zou ◽  
Dahong Huang ◽  
Haigang Wei ◽  
Siyuan Wu ◽  
Jing Song ◽  
...  

Background. Oral squamous cell carcinoma (OSCC) is the most common type of oral cancer, which remains a major cause of morbidity and mortality in patients with head and neck cancers. However, the critical immune-related signatures and their prognostic values have rarely been investigated. Materials and Methods. Gene differential analysis was used to measure the differences of gene expression between the groups. Correlation analysis was used to assess the association between the gene expression levels and immune-related risk score/DNA methylation levels. The gene set enrichment analysis (GSEA) was used to identify the pathways or cell types enriched by those identified differentially expressed genes (DEGs). Results. In this study, we identified four immune-related gene signatures, including CTSG, TNFRSF4, LCORL, and PLAU, that were significantly associated with the overall survival in OSCC patients from the Cancer Genome Atlas (TCGA) OSCC cohort. Moreover, these four immune-related signatures were differentially expressed between the OSCC and nontumor tissues. The two groups (high and low risk) stratified by the immune-related risk scores had significantly different OS and mortality rates. The gene expression patterns and prognostic values of these immune-related signatures were also verified in two independent validation cohorts. Furthermore, the downregulated genes in the high-risk group (which were also upregulated in the low-risk group) were significantly enriched in the cell type-specific signatures of type 2 T helper cell (Th2), plasmacytoid dendritic cell (pDC), and memory B cell. In contrast, the upregulated genes in the high-score group were enriched in growth factor receptor-related signaling pathways, such as the VEGFA-VEGFR2 signaling pathway, PI3K-Akt signaling pathway, focal adhesion-PI3K-Akt-mTOR signaling pathway, and PDGF pathway, suggesting that those pathways were inversely correlated with immune cell infiltration. Conclusion. In summary, the immune-related signatures had the potential for predicting the risk of OSCC patients. Moreover, the present study also improved our understanding of the association between the growth factor receptor pathways and immune cell infiltration in OSCC.


2020 ◽  
Author(s):  
Xinhai Zhang ◽  
Tielou Chen ◽  
Boxin Zhang

Abstract Background: The tumor microenvironment chiefly consists of tumor cells, and tumor-infiltrating immune cells admixed with the stromal component. The recent clinical trial has shown that the tumor immune cell infiltration is correlated with the sensitivity to immunotherapy and the prognosis of head and neck squamous cell carcinoma (HNSC). However, to date, the immune infiltrative landscape of HNSC has not yet been elucidated. Methods: We proposed two computational algorithms to unravel the immune infiltration landscape of 1029 HNSC patients. The Boruta algorithm and principal component algorithms (PCA) were employed to quantify three immune cell infiltration gene subtypes categorized as per the immune cell infiltrations pattern. Results: The high ICI score subtype was characterized by a higher tumor mutation burden (TMB) and the immune-activated signaling pathway. However, a low ICI score subtype was categorized as per the activation of immunosuppressive signaling pathways such as TGF-BETA, WNT signaling pathway, and lower TMB. Two immunotherapy cohorts confirmed patients with higher ICI score demonstrated significant therapeutic advantages and clinical benefits.Conclusions: This demonstrated that the ICI score could serve as an effective prognostic biomarker and predictive indicator for immunotherapy. A comprehensive understanding of the HNSC immune landscape might help in tailoring immunotherapeutic strategies for different patients.


2022 ◽  
Vol 2022 ◽  
pp. 1-14
Author(s):  
Yuanyuan Feng ◽  
Xinfang Tang ◽  
Changcheng Li ◽  
Ying Su ◽  
Xiaoyu Wang ◽  
...  

Objective. ARID1A has been discovered as a potential cancer biomarker. But its role in hepatocellular carcinoma (HCC) is subject to considerable dispute. Methods. The relationship between ARID1A and clinical factors was investigated. Clinicopathological variables related to overall survival in HCC subjects were identified using Cox and Kaplan–Meier studies. The connection between immune infiltrating cells and ARID1A expression was investigated using the tumor Genome Atlas (TCGA) dataset for gene set enrichment analysis (GSEA). Finally, a cell experiment was used to confirm it. Results. The gender and cancer topography (T) categorization of HCC were linked to increased ARID1A expression. Participants with advanced levels of ARID1A expression had a worse prognosis than someone with lower levels. ARID1A was shown to be a risk indicator of overall survival on its own. ARID1A expression is inversely proportional to immune cell infiltration. In vitro, decreasing ARID1A expression substantially slowed the cell cycle and decreased HCC cell proliferation, migration, and invasion. Conclusion. The expression of ARID1A could be used to predict the outcome of HCC. It is closely related to tumor immune cell infiltration.


Sign in / Sign up

Export Citation Format

Share Document