scholarly journals Chromatin Interaction Responds to Breast Muscle Development and Intramuscular Fat Deposition Between Chinese Indigenous Chicken and Fast-Growing Broiler

Author(s):  
Weihua Tian ◽  
Zhang Wang ◽  
Dandan Wang ◽  
Yihao Zhi ◽  
Jiajia Dong ◽  
...  

Skeletal muscle development and intramuscular fat (IMF) content, which positively contribute to meat production and quality, are regulated by precisely orchestrated processes. However, changes in three-dimensional chromatin structure and interaction, a newly emerged mediator of gene expression, during the skeletal muscle development and IMF deposition have remained unclear. In the present study, we analyzed the differences in muscle development and IMF content between one-day-old commercial Arbor Acres broiler (AA) and Chinese indigenous Lushi blue-shelled-egg chicken (LS) and performed Hi-C analysis on their breast muscles. Our results indicated that significantly higher IMF content, however remarkably lower muscle fiber diameter was detected in breast muscle of LS chicken compared to that of AA broiler. The chromatin intra-interaction was prior to inter-interaction in both AA and LS chicken, and chromatin inter-interaction was heavily focused on the small and gene-rich chromosomes. For genomic compartmentalization, no significant difference in the number of B type compartments was found, but AA had more A type compartments versus LS. The A/B compartment switching of AA versus LS showed more A to B switching than B to A switching. There were no significant differences in the average sizes and distributions of topologically associating domains (TAD). Additionally, approximately 50% of TAD boundaries were overlapping. The reforming and disappearing events of TAD boundaries were identified between AA and LS chicken breast muscles. Among these, the HMGCR gene was located in the TAD-boundary regions in AA broilers, but in TAD-interior regions in LS chickens, and the IGF2BP3 gene was located in the AA-unique TAD boundaries. Both HMGCR and IGF2BP3 genes exhibited increased mRNA expression in one-day-old AA broiler breast muscles. It was demonstrated that the IGF2BP3 and HMGCR genes regulated by TAD boundary sliding were potential biomarkers for chicken breast muscle development and IMF deposition. Our data not only provide a valuable understanding of higher-order chromatin dynamics during muscle development and lipid accumulation but also reveal new insights into the regulatory mechanisms of muscle development and IMF deposition in chicken.

2019 ◽  
Vol 99 (2) ◽  
pp. 367-376
Author(s):  
Li-Qin Yang ◽  
Jian Li ◽  
Chun Wang ◽  
Qiu-Ying Wu ◽  
Xuan-Yu Chen ◽  
...  

PPARγ2, PGC-1α, and MEF2C play an important role in skeletal muscle development and fat deposition. This study aimed to determine their mRNA expression levels in longissimus dorsi (Ld), semitendinosus (Se), and soleus (Sol) muscles of crossbred Simmental bulls and estimate their association with intramuscular fat (IMF) content and meat shear force (MSF). We measured the muscle fiber (MF) density and area, IMF content, and MSF of 6-, 12-, and 36-mo-old bulls. We found that the expression patterns differed with age: the PPARγ2 expression in the three muscles of 36-mo-old bulls was greater than that in the muscles of 6- and 12-mo-old bulls (P < 0.05). Furthermore, PGC-1α expression in Sol of 36-mo-old and MEF2C expression in Ld of 12-mo-old bulls were higher than those in the respective muscles of 6- and 12-mo-old bulls, and 6- and 36-mo-old bulls, respectively (P < 0.05). The MF area, IMF content, and MSF increased with age (P < 0.05). The PPARγ2 mRNA expression in Ld, Se, and Sol was positively correlated with MF area and IMF content (P < 0.05) and negatively correlated with MF density (P < 0.05). Thus, PPARγ2 might be a candidate marker, which is positively correlated with IMF content and MF area.


Animals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 835
Author(s):  
Mohammadreza Mohammadabadi ◽  
Farhad Bordbar ◽  
Just Jensen ◽  
Min Du ◽  
Wei Guo

Farm-animal species play crucial roles in satisfying demands for meat on a global scale, and they are genetically being developed to enhance the efficiency of meat production. In particular, one of the important breeders’ aims is to increase skeletal muscle growth in farm animals. The enhancement of muscle development and growth is crucial to meet consumers’ demands regarding meat quality. Fetal skeletal muscle development involves myogenesis (with myoblast proliferation, differentiation, and fusion), fibrogenesis, and adipogenesis. Typically, myogenesis is regulated by a convoluted network of intrinsic and extrinsic factors monitored by myogenic regulatory factor genes in two or three phases, as well as genes that code for kinases. Marker-assisted selection relies on candidate genes related positively or negatively to muscle development and can be a strong supplement to classical selection strategies in farm animals. This comprehensive review covers important (candidate) genes that regulate muscle development and growth in farm animals (cattle, sheep, chicken, and pig). The identification of these genes is an important step toward the goal of increasing meat yields and improves meat quality.


Animals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1417
Author(s):  
Chuan Li ◽  
Ting Xiong ◽  
Mingfang Zhou ◽  
Lei Wan ◽  
Suwang Xi ◽  
...  

Poultry skeletal muscle provides high quality protein for humans. Study of the genetic mechanisms during duck skeletal muscle development contribute to future duck breeding and meat production. In the current study, three breast muscle samples from Shan Ma ducks at embryonic day 13 (E13) and E19 were collected, respectively. We detected microRNA (miRNA) expression using high throughput sequencing following bioinformatic analysis. qRT-PCR validated the reliability of sequencing results. We also identified target prediction results using the luciferase reporter assay. A total of 812 known miRNAs and 279 novel miRNAs were detected in six samples; as a result, 61 up-regulated and 48 down-regulated differentially expressed miRNAs were identified between E13 and E19 (|log2 fold change| ≥ 1 and p ≤ 0.05). Enrichment analysis showed that target genes of the differentially expressed miRNAs were enriched on many muscle development-related gene ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, especially mitogen-activated protein kinase (MAPK) signaling pathways. An interaction network was constructed using the target genes of the differentially expressed miRNAs. These results complement the current duck miRNA database and offer several miRNA candidates for future studies of skeletal muscle development in the duck.


BMC Genomics ◽  
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Jinghui Li ◽  
Siyuan Xing ◽  
Guiping Zhao ◽  
Maiqing Zheng ◽  
Xinting Yang ◽  
...  

Abstract Background The development of skeletal muscle is closely related to the efficiency of meat production and meat quality. Chicken skeletal muscle development depends on myogenesis and adipogenesis and occurs in two phases—hyperplasia and hypertrophy. However, cell profiles corresponding to the two-phase muscle development have yet to be determined. Single-cell RNA-sequencing (scRNA-seq) can elucidate the cell subpopulations in tissue and capture the gene expression of individual cells, which can provide new insights into the myogenesis and intramuscular adipogenesis. Results Ten cell clusters at the post-hatching developmental stage at Day 5 and seven cell clusters at the late developmental stage at Day 100 were identified in chicken breast muscles by scRNA-seq. Five myocyte-related clusters and two adipocyte clusters were identified at Day 5, and one myocyte cluster and one adipocyte cluster were identified at Day 100. The pattern of cell clustering varied between the two stages. The cell clusters showed clear boundaries at the terminal differentiation stage at Day 100; by contrast, cell differentiation was not complete at Day 5. APOA1 and COL1A1 were selected from up-regulated genes in the adipocyte cluster and found to be co-expressed with the ADIPOQ adipocyte marker gene in breast muscles by RNA in situ hybridization. Conclusions This study is the first to describe the heterogeneity of chicken skeletal muscle at two developmental stages. The genes APOA1 and COL1A1 were identified as biomarkers for chicken intramuscular fat cells.


Animals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1906
Author(s):  
Doaa Ibrahim ◽  
Hanan S. Al-Khalaifah ◽  
Ahmed Abdelfattah-Hassan ◽  
Haitham Eldoumani ◽  
Safaa I. Khater ◽  
...  

Appropriate skeletal muscle development in poultry is positively related to increasing its meat production. Synthetic peptides with growth hormone-boosting properties can intensify the effects of endogenous growth hormones. However, their effects on the mRNA and miRNA expression profiles that control muscle development post-hatching in broiler chicks is unclear. Thus, we evaluated the possible effects of synthetic growth hormone-boosting peptide (GHBP) inclusion on a chicken’s growth rate, skeletal muscle development-related genes and myomiRs, serum biochemical parameters, and myofiber characteristics. A total of 400 one-day-old broiler chicks were divided into four groups supplied with GHBP at the levels of 0, 100, 200 and 300 μg/kg for 7 days post-hatching. The results showed that the highest levels of serum IGF-1 and GH at d 20 and d 38 post-hatching were found in the 200 μg/kg GHBP group. Targeted gene expression analysis in skeletal muscle revealed that the GHBP effect was more prominent at d 20 post-hatching. The maximum muscle development in the 200 μg/kg GHBP group was fostered by the upregulation of IGF-1, mTOR, myoD, and myogenin and the downregulation of myostatin and the Pax-3 and -7 genes compared to the control group. In parallel, muscle-specific myomiR analysis described upregulation of miR-27b and miR-499 and down-regulation of miR-1a, miR-133a, miR-133b, and miR-206 in both the 200 and 300 μg/kg GHBP groups. This was reflected in the weight gain of birds, which was increased by 17.3 and 11.2% in the 200 and 300 μg/kg GHBP groups, respectively, when compared with the control group. Moreover, the maximum improvement in the feed conversion ratio was achieved in the 200 μg/kg GHBP group. The myogenic effects of GHBP were also confirmed via studying myofiber characteristics, wherein the largest myofiber sizes and areas were achieved in the 200 μg/kg GHBP group. Overall, our findings indicated that administration of 200 μg/kg GHBP for broiler chicks could accelerate their muscle development by positively regulating muscle-specific mRNA and myomiR expression and reinforcing myofiber growth.


2020 ◽  
Author(s):  
Xinhua Hou ◽  
Zishuai Wang ◽  
Ligang Wang ◽  
Fuping Zhao ◽  
Xin Liu ◽  
...  

Abstract Background Imprinted genes—exhibiting parent-specific transcription—play essential roles in the process of mammalian development and growth. To further understand the imprinted genes involved in skeletal muscle development, DNA-seq and RNA-seq were used to explore the characteristics of imprinted genes involved in skeletal muscle development from porcine reciprocal crosses. Results A total of 211 paternally and 417 maternally imprinted genes were obtained in this study. Of the candidate imprinted genes, 50 paternally and 112 maternally imprinted genes possessed cytosine and guanine dinucleotide (CpG) islands in their promoters that may have regulated the imprinted gene expression. Imprint-related motifs were predicted and PBX1 motifs may mediate the expression of imprinted genes in the process of skeletal-muscle development. Functional analysis showed that a maternally imprinted gene of EPHB1 was involved in skeletal muscle cell proliferation. Imprinted genes involved in the biological processes of cell proliferation, differentiation and fusion were also analyzed. More maternally imprinted genes, including ADRA1D, E2F1, FBXO40, GHRH and WNT5A, were involved in skeletal muscle development than paternally imprinted genes. Conclusions Skeletal muscle development is crucial for meat production. This study identified 628 porcine imprinted genes in skeletal muscle and revealed their functional role in skeletal muscle development. Our findings should further assist with the potential use of imprinted genes in pig breeding.


2018 ◽  
Vol 49 (6) ◽  
pp. 571-578 ◽  
Author(s):  
X. Yu ◽  
Z. Wang ◽  
H. Sun ◽  
Y. Yang ◽  
K. Li ◽  
...  

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Tieshan Xu ◽  
Zijie Xu ◽  
Lizhi Lu ◽  
Tao Zeng ◽  
Lihong Gu ◽  
...  

Abstract Background The number of myofiber is determined during the embryonic stage and does not increase during the postnatal period for birds, including goose. Thus, muscle production of adult goose is pre-determined during embryogenesis. Previous studies show N6-methyladenosine (m6A) is an important regulator for skeletal muscle development of birds and miRNAs play as a co-regulator for the skeletal muscle development in birds. Herein, we sequenced m6A and miRNA transcriptomes to investigate the profiles of m6A and their potential mechanism of regulating breast muscle development in Dingan Goose. Results We selected embryonic 21th day (E21) and embryonic 30th day (E30) to investigate the roles of transcriptome-wide m6A modification combining with mRNAs and miRNAs in goose breast muscle development. In this study, m6A peaks were mainly enriched in coding sequence (CDS) and start codon and397 genes were identified as differentially methylated genes (DMGs). GO and KEGG analysis showed that DMGs were highly related to cellular and metabolic process and that most DMGs were enriched in muscle-related pathways including Wnt signaling pathway, mTOR signaling and FoxO signaling pathway. Interestingly, a negative correlation between m6A methylation level and mRNA abundance was found through the analysis of m6A-RNA and RNA-seq data. Besides, we found 26 muscle-related genes in 397 DMGs. We also detected 228 differentially expressed miRNAs (DEMs), and further found 329 genes shared by the target genes of DEMs and DMGs (m6A-miRNA-genes), suggesting a tightly relationship between DEMs and DMGs. Among the m6A-miRNA-genes, we found 10 genes are related to breast muscle development. We further picked out an m6A-miRNA-gene, PDK3, from the 10 genes to visualize it and the result showed differentially methylated peaks on the mRNA transcript consistent with our m6A-seq results. Conclusion GO and KEGG of DMGs between E21 and E30 showed most DMGs were muscle-related. In total, 228 DEMs were found, and the majority of DMGs were overlapped with the targets of DEGs. The differentially methylated peaks along with an m6A-miRNA-gene, PDK3, showed the similar results with m6A-seq results. Taken together, the results presented here provide a reference for further investigation of embryonic skeletal muscle development mechanism in goose.


Sign in / Sign up

Export Citation Format

Share Document