scholarly journals A Mini Review of the Preparation and Photocatalytic Properties of Two-Dimensional Materials

2020 ◽  
Vol 8 ◽  
Author(s):  
Shuhua Hao ◽  
Xinpei Zhao ◽  
Qiyang Cheng ◽  
Yupeng Xing ◽  
Wenxuan Ma ◽  
...  

The successful preparation and application of graphene shows that it is feasible for the materials with a thickness of a single atom or few atomic layers to exist stably in nature. These materials can exhibit unusual physical and chemical properties due to their special dimension effects. At present, researchers have made great achievements in the preparation, characterization, modification, and theoretical research of 2D materials. Because the structure of 2D materials is often similar, it has a certain degree of qualitative versatility. Besides, 2D materials often carry good catalytic performance on account of their more active sites and adjustable harmonic electronic structure. In this review, taking 2D materials as examples [graphene, boron nitride (h-BN), transition metal sulfide and so on], we review the crystal structure and preparation methods of these materials in recent years, focus on their photocatalyst properties (carbon dioxide reduction and hydrogen production), and discuss their applications and development prospects in the future.

Catalysts ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 590 ◽  
Author(s):  
Yu Ren ◽  
Yuze Dong ◽  
Yaqing Feng ◽  
Jialiang Xu

Energy shortage and environmental pollution problems boost in recent years. Photocatalytic technology is one of the most effective ways to produce clean energy—hydrogen and degrade pollutants under moderate conditions and thus attracts considerable attentions. TiO2 is considered one of the best photocatalysts because of its well-behaved photo-corrosion resistance and catalytic activity. However, the traditional TiO2 photocatalyst suffers from limitations of ineffective use of sunlight and rapid carrier recombination rate, which severely suppress its applications in photocatalysis. Surface modification and hybridization of TiO2 has been developed as an effective method to improve its photocatalysis activity. Due to superior physical and chemical properties such as high surface area, suitable bandgap, structural stability and high charge mobility, two-dimensional (2D) material is an ideal modifier composited with TiO2 to achieve enhanced photocatalysis process. In this review, we summarized the preparation methods of 2D material/TiO2 hybrid and drilled down into the role of 2D materials in photocatalysis activities.


Molecules ◽  
2018 ◽  
Vol 24 (1) ◽  
pp. 88 ◽  
Author(s):  
Zuoyuan Dong ◽  
Hejun Xu ◽  
Fang Liang ◽  
Chen Luo ◽  
Chaolun Wang ◽  
...  

The emergence and development of two-dimensional (2D) materials has provided a new direction for enhancing the thermoelectric (TE) performance due to their unique structural, physical and chemical properties. However, the TE performance measurement of 2D materials is a long-standing challenge owing to the experimental difficulties of precise control in samples and high demand in apparatus. Until now, there is no universal methodology for measuring the dimensionless TE figure of merit (ZT) (the core parameter for evaluating TE performance) of 2D materials systematically in experiments. Raman spectroscopy, with its rapid and nondestructive properties for probing samples, is undoubtedly a powerful tool for characterizing 2D materials as it is known as a spectroscopic ‘Swiss-Army Knife’. Raman spectroscopy can be employed to measure the thermal conductivity of 2D materials and expected to be a systematic method in evaluating TE performance, boosting the development of thermoelectricity. In this review, thermoelectricity, 2D materials, and Raman techniques, as well as thermal conductivity measurements of 2D materials by Raman spectroscopy are introduced. The prospects of obtaining ZT and testing the TE performance of 2D materials by Raman spectroscopy in the future are also discussed.


2018 ◽  
Vol 24 (21) ◽  
pp. 2425-2431 ◽  
Author(s):  
Cao Wu ◽  
Zhou Chen ◽  
Ya Hu ◽  
Zhiyuan Rao ◽  
Wangping Wu ◽  
...  

Crystallization is a significant process employed to produce a wide variety of materials in pharmaceutical and food area. The control of crystal dimension, crystallinity, and shape is very important because they will affect the subsequent filtration, drying and grinding performance as well as the physical and chemical properties of the material. This review summarizes the special features of crystallization technology and the preparation methods of nanocrystals, and discusses analytical technology which is used to control crystal quality and performance. The crystallization technology applications in pharmaceutics and foods are also outlined. These illustrated examples further help us to gain a better understanding of the crystallization technology for pharmaceutics and foods.


Author(s):  
Paul С. Uzoma ◽  
Huan Hu ◽  
Mahdi Khadem ◽  
Oleksiy V. Penkov

The exfoliation of graphene has opened a new frontier in material science with a focus on 2D materials. The unique thermal, physical and chemical properties of these materials have made them one of the choicest candidates in novel mechanical and nano-electronic devices. Notably, 2D materials such as graphene, MoS2, WS2, h-BN, and Black Phosphorus have shown outstanding lowest frictional coefficients and wear rates, making them attractive materials for high-performance nano-lubricants and lubricating applications. The objective of this work is to provide a comprehensive overview of the most recent developments in the tribological potentials of 2D materials. At first, the essential physical, wear, and frictional characteristics of the 2D materials including their production techniques are discussed. Subsequently, the experimental explorations and theoretical simulations of the most common 2D materials are reviewed in regards to their tribological applications such as their use as solid lubricants and surface lubricant nano-additives. The effects of micro/nano textures on friction behavior are also reviewed. Finally, the current challenges in tribological applications of 2D materials and their prospects are discussed.


2021 ◽  
Author(s):  
Maoping Xu ◽  
Rui Wang ◽  
Kan Bian ◽  
Chuang Hou ◽  
Yaxing Wu ◽  
...  

Abstract Recently, two-dimensional (2D) boron nanosheets have been predicted to exhibit exceptional physical and chemical properties, which is expected to be widely used in advanced electronics, optoelectronic, energy storage and conversion devices. However, the experimental application of 2D boron nanosheets in hydrogen evolution reactiuon (HER) has not been reported. Here, we have grown ultrathin boron nanosheets on tungsten foils via chemical vapor deposition (CVD). The prepared triclinic boron nanosheets are highly crystalline, which perfectly match the structure in the previous theoretical calculations. Notably, the boron nanosheets show excellent HER performance. The Tafel slope is only 64 mV/dec-1 and the nanosheets can maintain good stability under long-time cycle in acidic solution. The improvement of performance is mainly due to the metal properties and a large number of exposed active sites on the boron nanosheets, which is confirmed by first-principle calculations.


Coatings ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 897
Author(s):  
Paul C. Uzoma ◽  
Huan Hu ◽  
Mahdi Khadem ◽  
Oleksiy V. Penkov

The exfoliation of graphene has opened a new frontier in material science with a focus on 2D materials. The unique thermal, physical and chemical properties of these materials have made them one of the choicest candidates in novel mechanical and nano-electronic devices. Notably, 2D materials such as graphene, MoS2, WS2, h-BN and black phosphorus have shown outstanding lowest frictional coefficients and wear rates, making them attractive materials for high-performance nano-lubricants and lubricating applications. The objective of this work is to provide a comprehensive overview of the most recent developments in the tribological potentials of 2D materials. At first, the essential physical, wear and frictional characteristics of the 2D materials including their production techniques are discussed. Subsequently, the experimental explorations and theoretical simulations of the most common 2D materials are reviewed in regards to their tribological applications such as their use as solid lubricants and surface lubricant nano-additives. The effects of micro/nano textures on friction behavior are also reviewed. Finally, the current challenges in tribological applications of 2D materials and their prospects are discussed.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Xi Zhang ◽  
Guoqing Cui ◽  
Haisong Feng ◽  
Lifang Chen ◽  
Hui Wang ◽  
...  

AbstractSelective hydrogenolysis of biomass-derived glycerol to propanediol is an important reaction to produce high value-added chemicals but remains a big challenge. Herein we report a PtCu single atom alloy (SAA) catalyst with single Pt atom dispersed on Cu nanoclusters, which exhibits dramatically boosted catalytic performance (yield: 98.8%) towards glycerol hydrogenolysis to 1,2-propanediol. Remarkably, the turnover frequency reaches up to 2.6 × 103 molglycerol·molPtCu–SAA−1·h−1, which is to our knowledge the largest value among reported heterogeneous metal catalysts. Both in situ experimental studies and theoretical calculations verify interface sites of PtCu–SAA serve as intrinsic active sites, in which the single Pt atom facilitates the breakage of central C–H bond whilst the terminal C–O bond undergoes dissociation adsorption on adjacent Cu atom. This interfacial synergistic catalysis based on PtCu–SAA changes the reaction pathway with a decreased activation energy, which can be extended to other noble metal alloy systems.


2013 ◽  
Vol 816-817 ◽  
pp. 65-69
Author(s):  
Yi Zhang

New materials play an important part in today high and new technology.Superconducting nanomaterial has become the most vibrant in new material research due to its unique physical and chemical properties. This paper focuses on how small-size effect affects superconducting transition temperature, and summarizes the concrete preparation methods of superconducting nanomaterials, hoping to provide a reference for material researchers.


2021 ◽  
Vol 118 (49) ◽  
pp. e2109241118
Author(s):  
Linh N. V. Le ◽  
Gwendolyn A. Bailey ◽  
Anna G. Scott ◽  
Theodor Agapie

Nitrogen-fixing organisms perform dinitrogen reduction to ammonia at an Fe-M (M = Mo, Fe, or V) cofactor (FeMco) of nitrogenase. FeMco displays eight metal centers bridged by sulfides and a carbide having the MFe7S8C cluster composition. The role of the carbide ligand, a unique motif in protein active sites, remains poorly understood. Toward addressing how the carbon bridge affects the physical and chemical properties of the cluster, we isolated synthetic models of subsite MFe3S3C displaying sulfides and a chelating carbyne ligand. We developed synthetic protocols for structurally related clusters, [Tp*M’Fe3S3X]n−, where M’ = Mo or W, the bridging ligand X = CR, N, NR, S, and Tp* = Tris(3,5-dimethyl-1-pyrazolyl)hydroborate, to study the effects of the identity of the heterometal and the bridging X group on structure and electrochemistry. While the nature of M’ results in minor changes, the chelating, μ3-bridging carbyne has a large impact on reduction potentials, being up to 1 V more reducing compared to nonchelating N and S analogs.


2021 ◽  
Vol 2 (10) ◽  
pp. 977-984
Author(s):  
Divya Chauhan ◽  
Mohammad Ashfaq ◽  
Neetu Talreja ◽  
Ramalinga Viswanathan Managalraja

Recently 2D materials are booming in the field of energy, environment, and biomedical application. Incorporation of metal/non-metal within 2D materials significantly influences the physical and chemical properties, making them intriguing materials for various applications. The advancement of 2D material requires strategic modification by manipulating the electronic structure, which remains a challenge. Herein, we describe 2D materials for the environment, energy, and biomedical application. A predominant aim of this short communication is to summarize the literature on the advanced environment, energy, and biomedical application (especially COVID-19).


Sign in / Sign up

Export Citation Format

Share Document