scholarly journals Tribology of 2D Nanomaterials: A Review

Coatings ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 897
Author(s):  
Paul C. Uzoma ◽  
Huan Hu ◽  
Mahdi Khadem ◽  
Oleksiy V. Penkov

The exfoliation of graphene has opened a new frontier in material science with a focus on 2D materials. The unique thermal, physical and chemical properties of these materials have made them one of the choicest candidates in novel mechanical and nano-electronic devices. Notably, 2D materials such as graphene, MoS2, WS2, h-BN and black phosphorus have shown outstanding lowest frictional coefficients and wear rates, making them attractive materials for high-performance nano-lubricants and lubricating applications. The objective of this work is to provide a comprehensive overview of the most recent developments in the tribological potentials of 2D materials. At first, the essential physical, wear and frictional characteristics of the 2D materials including their production techniques are discussed. Subsequently, the experimental explorations and theoretical simulations of the most common 2D materials are reviewed in regards to their tribological applications such as their use as solid lubricants and surface lubricant nano-additives. The effects of micro/nano textures on friction behavior are also reviewed. Finally, the current challenges in tribological applications of 2D materials and their prospects are discussed.

Author(s):  
Paul С. Uzoma ◽  
Huan Hu ◽  
Mahdi Khadem ◽  
Oleksiy V. Penkov

The exfoliation of graphene has opened a new frontier in material science with a focus on 2D materials. The unique thermal, physical and chemical properties of these materials have made them one of the choicest candidates in novel mechanical and nano-electronic devices. Notably, 2D materials such as graphene, MoS2, WS2, h-BN, and Black Phosphorus have shown outstanding lowest frictional coefficients and wear rates, making them attractive materials for high-performance nano-lubricants and lubricating applications. The objective of this work is to provide a comprehensive overview of the most recent developments in the tribological potentials of 2D materials. At first, the essential physical, wear, and frictional characteristics of the 2D materials including their production techniques are discussed. Subsequently, the experimental explorations and theoretical simulations of the most common 2D materials are reviewed in regards to their tribological applications such as their use as solid lubricants and surface lubricant nano-additives. The effects of micro/nano textures on friction behavior are also reviewed. Finally, the current challenges in tribological applications of 2D materials and their prospects are discussed.


2020 ◽  
Author(s):  
James McDonagh ◽  
William Swope ◽  
Richard L. Anderson ◽  
Michael Johnston ◽  
David J. Bray

Digitization offers significant opportunities for the formulated product industry to transform the way it works and develop new methods of business. R&D is one area of operation that is challenging to take advantage of these technologies due to its high level of domain specialisation and creativity but the benefits could be significant. Recent developments of base level technologies such as artificial intelligence (AI)/machine learning (ML), robotics and high performance computing (HPC), to name a few, present disruptive and transformative technologies which could offer new insights, discovery methods and enhanced chemical control when combined in a digital ecosystem of connectivity, distributive services and decentralisation. At the fundamental level, research in these technologies has shown that new physical and chemical insights can be gained, which in turn can augment experimental R&D approaches through physics-based chemical simulation, data driven models and hybrid approaches. In all of these cases, high quality data is required to build and validate models in addition to the skills and expertise to exploit such methods. In this article we give an overview of some of the digital technology demonstrators we have developed for formulated product R&D. We discuss the challenges in building and deploying these demonstrators.<br>


Metals ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 650 ◽  
Author(s):  
Francisco Cordovilla ◽  
Alejandro Tur ◽  
Ángel García-Beltrán ◽  
Marcos Diaz ◽  
Ignacio Angulo ◽  
...  

Laser welding of dissimilar stainless steels is of interest when mechanical, corrosion, or esthetical requirements impose the use of a high-performance stainless steels, while production-cost requirements prevent using expensive materials in all the parts of a given device. The compromise may lead to the use of the most expensive material in critical areas and the cheapest one in the remaining. Their union can be materialized by laser-pulsed welding. It has intrinsic difficulties derived from the different physical and chemical properties of the steels, and from the need of preserving the protective passive layer. The present work achieves a welded joint with minimum thermal impact by means of laser pulses, capable of preserving the corrosion resistance of the involved stainless steels. The influence of the parameters to define static and dynamic pulses on the material and on the welding regime, keyhole, or heat conduction, is studied. It is used to calculate the overlapping factor of the pulses on the basis of the real dimensions of the melted area. A continuous joint has been built with dynamic pulses. The corrosion resistance of it has been checked showing a similar behavior to the non-heated material. The microstructure of the optimized joint is associated with a reduced HAZ while its mechanical behavior is suitable for its real application.


Author(s):  
Manish Kumar Singh ◽  
Mahesh K Lakshman

To large extent, the physical and chemical properties of peptidomimetic molecules are dictated by the integrated heterocyclic scaffolds they contain. Heterocyclic moieties are introduced into a majority of peptide-mimicking molecules...


Author(s):  
Cayla Cook ◽  
Veera Gnaneswar Gude

Chitosan is a naturally occurring biopolymer originating from several microbial species as well as crustacean species, such as shrimp and lobster. Chitosan has excellent physical and chemical properties that allow its use in various environmental applications especially in water treatment. It is a biodegradable polymer, and it is inexpensive providing an environmentally friendly and economic option for water and wastewater treatment. Chitosan offers a myriad of applications through chemical coagulation and flocculation, antimicrobial properties, adsorption capabilities, and nanofiltration and can provide a sustainable route for water and wastewater treatment. This book chapter elaborates the recent developments in chitosan applications in water and wastewater treatment.


Author(s):  
John Evans

The chemical properties of the volatile elements in groups 15 to 18 are outlined, showing how the the periodicicty of the properties of the elements shapes their chemistry. The manufacture of hydrogen and chlorine is described, showing how mercury-free methods have been developed for the latter. The effect of the formation of atmospheric CO2 on atmospheric oxygen content is explained in terms of dissolution in the oceans. Remediation of the exhaust gases from internal combustion engines by catalysts to remove CO2, NOx and carbonaceous particulates is explained. Options for carbon capture and storage by physical and chemical processes are evaluated, and examples provided of these processes in operation. Exploitation of the atmosphere for energy capture using wind turbines has been aided by the development of high performance magnets. The basis of these magnets and the role of rare earth elements is explained.


1993 ◽  
Vol 155 ◽  
pp. 147-154 ◽  
Author(s):  
P.J. Huggins

This paper summarizes recent developments in the study of planetary nebulae using observations of molecular lines and the 21 cm line of H I. The observations reveal that many planetary nebulae are surrounded by envelopes of neutral gas, whose mass often exceeds that of the ionized nebulae. They also provide valuable information on the physical and chemical properties of the envelopes, their structure, and kinematics. The neutral envelopes firmly link the formation of planetary nebulae with the mass loss by AGB stars, and can play an important role in the subsequent evolution of the nebulae.


Catalysts ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 680 ◽  
Author(s):  
Alexandra Virginia Bounegru ◽  
Constantin Apetrei

This paper aims to revise research on carbonaceous nanomaterials used in developing sensors. In general, nanomaterials are known to be useful in developing high-performance sensors due to their unique physical and chemical properties. Thus, descriptions were made for various structural features, properties, and manner of functionalization of carbon-based nanomaterials used in electrochemical sensors. Of the commonly used technologies in manufacturing electrochemical sensors, the screen-printing technique was described, highlighting the advantages of this type of device. In addition, an analysis was performed in point of the various applications of carbon-based nanomaterial sensors to detect analytes of interest in different sample types.


2019 ◽  
Vol 2019 ◽  
pp. 1-20
Author(s):  
Ksenia Loskutova ◽  
Dmitry Grishenkov ◽  
Morteza Ghorbani

Acoustic droplet vaporization (ADV) is the physical process in which liquid undergoes phase transition to gas after exposure to a pressure amplitude above a certain threshold. In recent years, new techniques in ultrasound diagnostics and therapeutics have been developed which utilize microformulations with various physical and chemical properties. The purpose of this review is to give the reader a general idea on how ADV can be implemented for the existing biomedical applications of droplet vaporization. In this regard, the recent developments in ultrasound therapy which shed light on the ADV are considered. Modern designs of capsules and nanodroplets (NDs) are shown, and the material choices and their implications for function are discussed. The influence of the physical properties of the induced acoustic field, the surrounding medium, and thermophysical effects on the vaporization are presented. Lastly, current challenges and potential future applications towards the implementation of the therapeutic droplets are discussed.


2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Ismail Ab Rahman ◽  
Vejayakumaran Padavettan

Application of silica nanoparticles as fillers in the preparation of nanocomposite of polymers has drawn much attention, due to the increased demand for new materials with improved thermal, mechanical, physical, and chemical properties. Recent developments in the synthesis of monodispersed, narrow-size distribution of nanoparticles by sol-gel method provide significant boost to development of silica-polymer nanocomposites. This paper is written by emphasizing on the synthesis of silica nanoparticles, characterization on size-dependent properties, and surface modification for the preparation of homogeneous nanocomposites, generally by sol-gel technique. The effect of nanosilica on the properties of various types of silica-polymer composites is also summarized.


Sign in / Sign up

Export Citation Format

Share Document