scholarly journals Assemblies of Polyacrylonitrile-Derived Photoactive Polymers as Blue and Green Light Photo-Cocatalysts for Cu-Catalyzed ATRP in Water and Organic Solvents

2021 ◽  
Vol 9 ◽  
Author(s):  
Mingkang Sun ◽  
Francesca Lorandi ◽  
Rui Yuan ◽  
Sajjad Dadashi-Silab ◽  
Tomasz Kowalewski ◽  
...  

Photoluminescent nanosized quasi-spherical polymeric assemblies prepared by the hydrothermal reaction of polyacrylonitrile (PAN), ht-PLPPAN, were demonstrated to have the ability to photo-induce atom transfer radical polymerization (ATRP) catalyzed by low, parts per million concentrations of CuII complex with tris(2-pyridylmethyl)amine (TPMA). Such photo induced ATRP reactions of acrylate and methacrylate monomers were performed in water or organic solvents, using ht-PLPPAN as the photo-cocatalyst under blue or green light irradiation. Mechanistic studies indicate that ht-PLPPAN helps to sustain the polymerization by facilitating the activation of alkyl bromide species by two modes: 1) green or blue light-driven photoreduction of the CuII catalyst to the activating CuI form, and 2) direct activation of dormant alkyl bromide species which occurs only under blue light. The photoreduction of the CuII complex by ht-PLPPAN was confirmed by linear sweep voltammetry performed under illumination. Analysis of the polymerization kinetics in aqueous media indicated even though CuI complexes comprised only 1–1.4% of all Cu species at equilibrium, they exhibited high activation rate constant and activated the alkyl bromide initiators five to six orders of magnitude faster than ht-PLPPAN.

2020 ◽  
Vol 07 ◽  
Author(s):  
Tanmay Chatterjee ◽  
Nilanjana Mukherjee

Abstract: A natural driving force is always working behind the synthetic organic chemists towards the development of ‘green’ synthetic methodologies for the synthesis of useful classes of organic molecules having potential applications. The majority of the essential classes of organic transformations, including C-C and C-X (X = heteroatom) bond-forming crosscoupling reactions, cross dehydrogenative-coupling (CDC) mostly rely on the requirement of transition-metal catalysts and hazardous organic solvents. Hence, the scope in developing green synthetic strategies by avoiding the use of transitionmetal catalysts and hazardous organic solvents for those important and useful classes of organic transformations is very high. Hence, several attempts are made so far. Water being the most abundant, cheap, and green solvent in the world; numerous synthetic methods have been developed in an aqueous medium. In this review, the development of transitionmetal- free green synthetic strategies for various important classes of organic transformations such as C-C and C-X bondforming cross-coupling, cross dehydrogenative-coupling, and oxidative-coupling in an aqueous media is discussed.


Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4466
Author(s):  
Pablo Domínguez de María

Nitriles comprise a broad group of chemicals that are currently being industrially produced and used in fine chemicals and pharmaceuticals, as well as in bulk applications, polymer chemistry, solvents, etc. Aldoxime dehydratases catalyze the cyanide-free synthesis of nitriles starting from aldoximes under mild conditions, holding potential to become sustainable alternatives for industrial processes. Different aldoxime dehydratases accept a broad range of aldoximes with impressive high substrate loadings of up to >1 Kg L−1 and can efficiently catalyze the reaction in aqueous media as well as in non-aqueous systems, such as organic solvents and solvent-free (neat substrates). This paper provides an overview of the recent developments in this field with emphasis on strategies that may be of relevance for industry and sustainability. When possible, potential links to biorefineries and to the use of biogenic raw materials are discussed.


Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4241
Author(s):  
Evgeniia Shchelkanova ◽  
Liia Shchapova ◽  
Alexander Shchelkanov ◽  
Tomohiro Shibata

Since photoplethysmography (PPG) sensors are usually placed on open skin areas, temperature interference can be an issue. Currently, green light is the most widely used in the reflectance PPG for its relatively low artifact susceptibility. However, it has been known that hemoglobin absorption peaks at the blue part of the spectrum. Despite this fact, blue light has received little attention in the PPG field. Blue wavelengths are commonly used in phototherapy. Combining blue light-based treatments with simultaneous blue PPG acquisition could be potentially used in patients monitoring and studying the biological effects of light. Previous studies examining the PPG in blue light compared to other wavelengths employed photodetectors with inherently lower sensitivity to blue, thereby biasing the results. The present study assessed the accuracy of heartbeat intervals (HBIs) estimation from blue and green PPG signals, acquired under baseline and cold temperature conditions. Our PPG system is based on TCS3472 Color Sensor with equal sensitivity to both parts of the light spectrum to ensure unbiased comparison. The accuracy of the HBIs estimates, calculated with five characteristic points (PPG systolic peak, maximum of the first PPG derivative, maximum of the second PPG derivative, minimum of the second PPG derivative, and intersecting tangents) on both PPG signal types, was evaluated based on the electrocardiographic values. The statistical analyses demonstrated that in all cases, the HBIs estimation accuracy of blue PPG was nearly equivalent to the G PPG irrespective of the characteristic point and measurement condition. Therefore, blue PPG can be used for cardiovascular parameter acquisition. This paper is an extension of work originally presented at the 42nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society.


2015 ◽  
Vol 3 (39) ◽  
pp. 10177-10187 ◽  
Author(s):  
Valery N. Kozhevnikov ◽  
Bertrand Donnio ◽  
Benoît Heinrich ◽  
J. A. Gareth Williams ◽  
Duncan W. Bruce

Blue-green light-emitting phosphorescent PtII complexes of 1,3-bis(2-pyridyl)benzene are reported that incorporate hexadecyl-containing fragments in the 5-position of the pyridine rings.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Fumiya Osawa ◽  
Kazuhiro Marumoto

Abstract Spin-states and charge-trappings in blue organic light-emitting diodes (OLEDs) are important issues for developing high-device-performance application such as full-color displays and white illumination. However, they have not yet been completely clarified because of the lack of a study from a microscopic viewpoint. Here, we report operando electron spin resonance (ESR) spectroscopy to investigate the spin-states and charge-trappings in organic semiconductor materials used for blue OLEDs such as a blue light-emitting material 1-bis(2-naphthyl)anthracene (ADN) using metal–insulator–semiconductor (MIS) diodes, hole or electron only devices, and blue OLEDs from the microscopic viewpoint. We have clarified spin-states of electrically accumulated holes and electrons and their charge-trappings in the MIS diodes at the molecular level by directly observing their electrically-induced ESR signals; the spin-states are well reproduced by density functional theory. In contrast to a green light-emitting material, the ADN radical anions largely accumulate in the film, which will cause the large degradation of the molecule and devices. The result will give deeper understanding of blue OLEDs and be useful for developing high-performance and durable devices.


1969 ◽  
Vol 115 (1) ◽  
pp. 11-18 ◽  
Author(s):  
A. Massaglia ◽  
U. Rosa ◽  
G. Rialdi ◽  
C. A. Rossi

1. The iodination of insulin was studied under various experimental conditions in aqueous media and in some organic solvents, by measuring separately the uptake of iodine by the four tyrosyl groups and the relative amounts of monoiodotyrosine and di-iodotyrosine that are formed. In aqueous media from pH1 to pH9 the iodination occurs predominantly on the tyrosyl groups of the A chain. Some organic solvents increase the iodine uptake of the B-chain tyrosyl groups. Their efficacy in promoting iodination of Tyr-B-16 and Tyr-B-26 is in the order: ethylene glycol and propylene glycol≃methanol and ethanol>dioxan>8m-urea. 2. It is suggested that each of the four tyrosyl groups in insulin has a different environment: Tyr-A-14 is fully exposed to the solvent; Tyr-A-19 is sterically influenced by the environmental structure, possibly by the vicinity of a disulphide interchain bond; Tyr-B-16 is embedded into a non-polar area whose stability is virtually independent of the molecular conformation; Tyr-B-26 is probably in a situation similar to Tyr-B-16 with the difference that its non-polar environment depends on the preservation of the native structure.


2011 ◽  
Vol 22 (1) ◽  
pp. 27-35 ◽  
Author(s):  
Danica E. Goggin ◽  
Kathryn J. Steadman

AbstractSeeds have long been a model system for studying the intricacies of phytochrome-mediated light perception and signalling. However, very little is known about how they perceive blue and green light. Cryptochromes and phototropins, the major blue-light receptors in plants, are increasingly well-studied in vegetative tissues, but their role in light perception in seeds largely remains a mystery. Green light elicits a number of responses in plants that cannot be explained by the action of any of the known photoreceptors, and some seeds are apparently also capable of perceiving green light. Here, the responses of seeds to blue and green light are collated from a thorough examination of the literature and considered from the perspective of the potential photoreceptor(s) mediating them. Knowledge of how seeds perceive wavelengths that are suboptimal for phytochrome activation could help to improve germination and seedling establishment for both crop and native species.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jun Liu ◽  
Marc W. van Iersel

Red and blue light are traditionally believed to have a higher quantum yield of CO2 assimilation (QY, moles of CO2 assimilated per mole of photons) than green light, because green light is absorbed less efficiently. However, because of its lower absorptance, green light can penetrate deeper and excite chlorophyll deeper in leaves. We hypothesized that, at high photosynthetic photon flux density (PPFD), green light may achieve higher QY and net CO2 assimilation rate (An) than red or blue light, because of its more uniform absorption throughtout leaves. To test the interactive effects of PPFD and light spectrum on photosynthesis, we measured leaf An of “Green Tower” lettuce (Lactuca sativa) under red, blue, and green light, and combinations of those at PPFDs from 30 to 1,300 μmol⋅m–2⋅s–1. The electron transport rates (J) and the maximum Rubisco carboxylation rate (Vc,max) at low (200 μmol⋅m–2⋅s–1) and high PPFD (1,000 μmol⋅m–2⋅s–1) were estimated from photosynthetic CO2 response curves. Both QYm,inc (maximum QY on incident PPFD basis) and J at low PPFD were higher under red light than under blue and green light. Factoring in light absorption, QYm,abs (the maximum QY on absorbed PPFD basis) under green and red light were both higher than under blue light, indicating that the low QYm,inc under green light was due to lower absorptance, while absorbed blue photons were used inherently least efficiently. At high PPFD, the QYinc [gross CO2 assimilation (Ag)/incident PPFD] and J under red and green light were similar, and higher than under blue light, confirming our hypothesis. Vc,max may not limit photosynthesis at a PPFD of 200 μmol m–2 s–1 and was largely unaffected by light spectrum at 1,000 μmol⋅m–2⋅s–1. Ag and J under different spectra were positively correlated, suggesting that the interactive effect between light spectrum and PPFD on photosynthesis was due to effects on J. No interaction between the three colors of light was detected. In summary, at low PPFD, green light had the lowest photosynthetic efficiency because of its low absorptance. Contrary, at high PPFD, QYinc under green light was among the highest, likely resulting from more uniform distribution of green light in leaves.


Synlett ◽  
2020 ◽  
Vol 31 (19) ◽  
pp. 1942-1946
Author(s):  
Andreas Kirschning ◽  
Mona Oltmanns

AbstractClaisen rearrangement of electron-deficient O-allylated phenols, including fluorine-modified phenols, is facilitated in aqueous media at high temperatures and pressures under flow conditions, as opposed to organic solvents. The O-allylation of phenols can be coupled with the Claisen rearrangement in an integrated flow system.


2005 ◽  
Vol 13 (3) ◽  
pp. 223-234
Author(s):  
C. Sanglar ◽  
M. Defay ◽  
H. Waton ◽  
A. Bonhomme ◽  
S. Alamercery ◽  
...  

This work on organic dental composites was undertaken to determine the role of residual reactive methacrylate functions at the end of the photopolymerization cycle, and to investigate the fate of the residual monomers and oligomers in organic (ethanol) and aqueous (water and artificial saliva) media. The results show that all the methacrylate monomers present in dentine migrate into ethanol (about 1% (w/w)). In aqueous media on the other hand, only the most hydrophilic monomer (UDMA) migrates (0.05% (w/w)) into water and 0.03% into artificial saliva (pH = 9). This desorption in the three media is accompanied by the hydrolysis of monomers, leading to the formation of monohydrolyzed urethane dimethacrylate (UDMA) and bis-phenyl glycidyl dimethacrylate (BISGMA); UDMA and BISGMA are completely hydrolyzed in artificial saliva. The alkalinity of the milieu apparently favours the hydrolysis of methacrylate functions.


Sign in / Sign up

Export Citation Format

Share Document