scholarly journals Angiogenesis, Anti-Tumor, and Anti-Metastatic Activity of Novel α-Substituted Hetero-Aromatic Chalcone Hybrids as Inhibitors of Microtubule Polymerization

2021 ◽  
Vol 9 ◽  
Author(s):  
Moran Sun ◽  
Yuyang Wang ◽  
Minghua Yuan ◽  
Qing Zhao ◽  
Yixin Zhang ◽  
...  

A library of new heteroaromatic ring-linked chalcone analogs were designed and synthesized of these, compound 7m with α-CH3 substitution and bearing a benzofuran ring, displaying the most potent activity, with IC50 values of 0.07–0.183 µM against three cancer cells. Its low cytotoxicity toward normal human cells and strong potency on drug-resistant cells revealed the possibility for cancer therapy. It also could moderately inhibit in vitro tubulin polymerization with an IC50 value of 12.23 µM, and the disruption of cellular architecture in MCF-7 cells was observed by an immunofluorescence assay. Cellular-based mechanism studies elucidated that 7m arrested the cell cycle at the G2/M phase and induced apoptosis by regulating the expression levels of caspases and PARP protein. Importantly, the compound 7 m was found to inhibit HUVEC tube formation, migration, and invasion in vitro. In vivo assay showed that 7m could effectively destroy angiogenesis of zebrafish embryos. Furthermore, our data suggested that treatment with 7m significantly reduced MCF-7 cell metastasis and proliferation in vitro and in zebrafish xenograft. Collectively, this work showed that chalcone hybrid 7m deserves further investigation as dual potential tubulin polymerization and angiogenesis inhibitor.

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Yuan-ming Jiang ◽  
Wei Liu ◽  
Ling Jiang ◽  
Hongbin Chang

Background. Circular RNAs (circRNAs) have been reported to play important roles in the development and progression of papillary thyroid carcinoma (PTC). However, the function and molecular mechanism of circRNA low-density lipoprotein receptor (circLDLR) in the tumorigenesis of PTC remain unknown. Results. In this study, circLDLR was found to be markedly upregulated in PTC tissues and cell lines, and knockdown of circLDLR inhibited PTC cell proliferation, migration, and invasion but induced apoptosis in vitro. Moreover, circLDLR acted as a sponge for miR-637, and miR-637 interference reversed the anticancer effects of circLDLR knockdown on PTC cells. LMO4 was verified to be a target of miR-637; LMO4 upregulation abolished miR-637 mediated inhibition of cell growth and metastasis in PTC. Additionally, circLDLR could indirectly modulate LMO4 via acting as a sponge of miR-637 in PTC cells. Besides that, xenograft analysis showed that circLDLR knockdown suppressed tumor growth in vivo via regulating LMO4 and miR-637. Conclusion. Taken together, these results demonstrated that circLDLR promoted PTC tumorigenesis through miR-637/LMO4 axis, which may provide a novel insight into the understanding of PTC tumorigenesis and be useful in developing potential targets for PTC treatment.


2016 ◽  
Vol 11 (10) ◽  
pp. 1934578X1601101
Author(s):  
Hyun Ju Kim ◽  
Mok-Ryeon Ahn

Apigenin has been reported to exert angiogenic and anticancer activities in vitro. The mechanism of inhibition of angiogenesis by apigenin, however, has not been well-established. In this study, we investigated whether apigenin not only inhibited tube formation but also induced apoptosis in human umbilical vein endothelial cells (HUVECs). Furthermore, strong antiangiogenic activity of apigenin was observed in the in vivo assay using chick embryo chorioallantoic membrane (CAM). We also analyzed changes in survival signals and the apoptotic pathway through Western blotting. The results indicate that apigenin exerts its antiangiogenic effects through induction of endothelial apoptosis.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Qingsong Cao ◽  
Jie Zhang ◽  
Tao Zhang

Nasopharyngeal carcinoma (NPC) is a head and neck tumor with high degree of malignancy and with high incidence especially in southern China. AIMP2-DX2, one isoform of the aminoacyl-tRNA synthetase interacting multifunctional proteins (AIMPs), is shown to be a potential target in many cancers. However, the detailed mechanisms of AIMP2-DX2 in NPC development remain to be elucidated. Here, we found that the mRNA expression level of AIMP2-DX2 was significantly increased in NPC specimens, compared with normal nasopharyngeal tissues. Microarray immunohistochemical analysis of NPC specimens and Kaplan–Meier analysis showed that patients with high AIMP2-DX2 protein expression had shorter overall survival than those with low AIMP2-DX2 level. Furthermore, mRNA and protein expression levels of AIMP2-DX2 were both increased in cultured NPC cell lines (5-8F, CNE-2Z, and CNE-1), by being compared with normal nasopharyngeal cell line NP69. Overexpression of AIMP2-DX2 remarkably promoted the cell viability, cell migration, and invasion of cultured NPC cells. Genetic knockdown of AIMP2-DX2 by shRNA lentiviruses significantly suppressed the proliferation, migration, and invasion and induced apoptosis of NPC cells. Inhibition of AIMP2-DX2 decreased the highly expressed level of matrix metalloproteinase- (MMP-) 2 and MMP-9, further suppressed proliferation, migration, and invasion in cultured NPC cells in vitro, and inhibited tumor growth in a xenograft mouse model in vivo. Taken together, these results suggest that AIMP2-DX2 plays an important role in the regulation of NPC and could be a potential therapeutic target and prognostic indicator for the treatment of NPC.


2021 ◽  
Author(s):  
Yong Wang ◽  
Jiawen Gao ◽  
Shasha Hu ◽  
Weiting Zeng ◽  
Hongjun Yang ◽  
...  

Abstract Background: Bladder cancer (BCa) is a commonly diagnosed malignancy worldwide that has poor survival depending on its intrinsic biologic aggressiveness and a peculiar radio- and chemoresistance features. Gaining a better understanding of tumorigenesis and developing new diagnosis and treatment strategies for BCa is important for improving BCa clinical outcome. SLC25 family member 21 (SLC25A21), a carrier transporting C5-C7 oxodicarboxylates, has been reported to contribute to oxoadipate acidemia. However, the potential role of SLC25A21 in cancer remains absolutely unknown. Methods: The expression levels of SLC25A21 in BCa and normal tissues were examined by real-time PCR and immunohistochemistry. Gain-of- and loss-of-function experiments were performed to detect the biological functions of SLC25A21 in vitro and in vivo by CCK-8 assay, plate colony formation assay, cell migration, invasion assay and experimental animal models. The subcellular distribution of substrate mediated by SLC25A21, mitochondrial membrane potential and ROS production were assessed to explore the potential mechanism of SLC25A21 in BCa.Results: We found that the expression of SLC25A21 was downregulated in BCa tissues compared to normal tissues. A significant positive correlation between decreased SLC25A21 expression and poor prognosis was observed in BCa patients. Overexpression of SLC25A21 significantly inhibited cell proliferation, migration and invasion and induced apoptosis in vitro. Moreover, the enhanced SLC25A21 expression significantly suppressed tumor growth in a xenograft mouse model. Furthermore, we revealed that SLC25A21 suppressed BCa growth by inducing the efflux of mitochondrial α-KG to the cytosol, decreasing to against oxidative stress, and activating the ROS-mediated mitochondrion-dependent apoptosis pathway. Conclusions: Our findings provide the first link between SLC25A21 expression and BCa and demonstrate that SLC25A21 acts as a crucial suppressor in BCa progression, which may help to provide new targets for BCa intervention.


2021 ◽  
Vol 71 (2) ◽  
pp. 245-266
Author(s):  
Qingfang Zeng ◽  
Cairong Luo ◽  
Junlae Cho ◽  
Donna Lai ◽  
Xiangchun Shen ◽  
...  

AbstractTryptanthrin is an indole quinazoline alkaloid from the indigo-bearing plants, such as Isatis indigotica Fort. Typically, this natural compound shows a variety of pharmacological activities such as antitumor, antibacterial, anti-inflammatory and antioxidant effects. This study was conducted to assess the antitumor activity of tryptanthrin in breast cancer models both in vitro and in vivo, and to explore the important role of the inflammatory tumor microenvironment (TME) in the antitumor effects of tryptanthrin. Human breast adenocarcinoma MCF-7 cells were used to assess the antitumor effect of tryptanthrin in vitro. MTT assay and colony formation assay were carried out to monitor the antiproliferative effect of tryptanthrin (1.56~50.0 μmol L−1) on inhibiting the proliferation and colony formation of MCF-7 cells, respectively. The migration and invasion of MCF-7 cells were evaluated by wound healing assay and Transwell chamber assay, respectively. Moreover, the 4T1 murine breast cancer model was established to examine the pharmacological activity of tryptanthrin, and three groups with different doses of tryptanthrin (25, 50 and 100 mg kg−1) were set in study. Additionally, tumor volumes and organ coefficients were measured and calculated. After two weeks of tryptanthrin treatment, samples from serum, tumor tissue and different organs from tumor-bearing mice were collected, and the enzyme-linked immunosorbent assay (ELISA) was performed to assess the regulation of inflammatory molecules in mouse serum. Additionally, pathological examinations of tumor tissues and organs from mice were evaluated through hematoxylin and eosin (H&E) staining. The expression of inflammatory proteins in tumor tissues was measured by immunohistochemistry (IHC) and Western blotting. Tryptanthrin inhibited the proliferation, migration and invasion of MCF-7 cells, up-regulated the protein level of E-cadherin, and down-regulated those of MMP-2 and Snail, as suggested by the MCF-7 cell experiment. According to the results from in vivo experiment, tryptanthrin was effective in inhibiting tumor growth, and it showed favorable safety without inducing the fluctuations of body mass and organ coefficient (p > 0.05). In addition, tryptanthrin also suppressed the expression levels of NOS1, COX-2 and NF-κB in mouse tumor tissues, and regulated those of IL-2, IL-10 and TNF-α in the serum of tumor cells-transplanted mice. Tryptanthrin exerted its anti-breast cancer activities through modulating the inflammatory TME both in vitro and in vivo.


Marine Drugs ◽  
2019 ◽  
Vol 17 (4) ◽  
pp. 228 ◽  
Author(s):  
Carrillo ◽  
Martínez-Poveda ◽  
Cheng-Sánchez ◽  
Guerra ◽  
Tobia ◽  
...  

Marine sponges are a prolific source of bioactive compounds. In this work, the putative antiangiogenic potential of a series of synthetic precursors of Solomonamide A, a cyclic peptide isolated from a marine sponge, was evaluated. By means of an in vitro screening, based on the inhibitory activity of endothelial tube formation, the compound Solo F–OH was selected for a deeper characterization of its antiangiogenic potential. Our results indicate that Solo F–OH is able to inhibit some key steps of the angiogenic process, including the proliferation, migration, and invasion of endothelial cells, as well as diminish their capability to degrade the extracellular matrix proteins. The antiangiogenic potential of Solo F–OH was confirmed by means of two different in vivo models: the chorioallantoic membrane (CAM) and the zebrafish yolk membrane (ZFYM) assays. The reduction in ERK1/2 and Akt phosphorylation in endothelial cells treated with Solo F–OH denotes that this compound could target the upstream components that are common to both pathways. Taken together, our results show a new and interesting biological activity of Solo F–OH as an inhibitor of the persistent and deregulated angiogenesis that characterizes cancer and other pathologies.


2019 ◽  
Vol 166 (6) ◽  
pp. 485-493 ◽  
Author(s):  
Anyun Mao ◽  
Maojian Chen ◽  
Qinghong Qin ◽  
Zhijie Liang ◽  
Wei Jiang ◽  
...  

Abstract It has been generally confirmed that zinc finger and BTB domain containing 7A (ZBTB7A) plays an important role in the occurrence and progression of malignant tumours, but the promotion or inhibition effect is related to tumour type. The mechanism between ZBTB7A and breast cancer is not well understood, so further research is needed. In this study, we first investigated the expression of ZBTB7A in tissue samples of clinical breast cancer patients, MDA-MB-231, MCF-7 and MCF-10A cells. Second, we overexpressed the ZBTB7A in MCF-7 cells and silenced the ZBTB7A in MDA-MB-231 cells using lentivirus transfection technology, respectively, and verified the effect of ZBTB7A on migration and invasion of breast cancer cell lines through in vitro cell function experiments, such as wound-healing assay, migration and invasion assay, quantitative real time reverse transcriptase (qRT-PCR) and western blot. Then, the correlation between the above influences, epithelial–mesenchymal transition (EMT) and NF-κB was analysed. Finally, in vivo tumour transplantation model in nude mice was established to verified the effect of ZBTB7A on metastasis of breast cancer MDA-MB-231 cells. In conclusion, ZBTB7A is highly expressed in cancer tissue, breast cancer cell line MDA-MB-231 and MCF-7. Meanwhile, the high expression of ZBTB7A may promote cell migration, invasion and tumour metastasis, which may be related to EMT events by regulating NF-κB.


2021 ◽  
Vol 12 (1) ◽  
pp. 309-319
Author(s):  
Yuqiang Ma ◽  
Tao Wu ◽  
Houjie Zhou ◽  
Guilu He ◽  
Yifei Li ◽  
...  

Abstract Vasculogenic mimicry (VM) is different from classical tumor angiogenesis and does not depend on endothelial cells. VM is closely related to the prognosis of various cancers. Canstatin was first identified as an endogenous angiogenesis inhibitor. In the present study, the inhibitory effect of canstatin on VM formation was evaluated. Human glioblastoma cell lines U87 and U251 were letivirally transduced to overexpress canstatin gene or GFP as control. In vitro assays showed that canstatin overexpression reduced the tube formation of U87 and U251 cells in Matrigel. A xenograft glioma model was created by subcutaneous injection of lentivirally modified U87 cells into nude mice. The results of in vivo experiments showed that canstatin gene introduction inhibited the growth of glioma xenografts. In tumor xenografts overexpressing canstatin, U87-mediated formation of VM-like structures and VM-related VEGF (vascular endothelial growth factor) expression were remarkably reduced. Canstatin overexpression also decreased the phosphorylation of Akt and reduced the expression of Survivin in vitro. In addition, HIF-1α production and MMP-2 secretion were decreased by canstatin overexpression. Therefore, these results suggested a protective role of canstatin during VM-like structure formation of glioma probably via inhibiting signaling pathways inducing vasculogenic mimicry.


2020 ◽  
Vol 16 (6) ◽  
pp. 922-930
Author(s):  
Pingshuan Dong ◽  
Honglei Wang ◽  
Shiying Xing ◽  
Xuming Yang ◽  
Shaoxin Wang ◽  
...  

Doxorubicin (DOX) is a widely used and effective anticancer drug. However, it shows high cardiotoxicity in several patients. The exact biological mechanisms of DOX-induced cardiotoxicity remain unclear. In the present study, we developed and assessed novel injectable hydrogel matrices combined with nanoparticles and secretome biomolecules to reduce DOXinduced cytotoxicity in human stem cell-derived cardiomyocytes. A Fe2O3 nanoparticle-loaded biocompatible silk sericin nanocomposite form was fabricated and used as an injectable carrier for secretome for in vivo cardiomyocyte metabolism. The formulated hydrogels carrying secretome were analyzed in vitro for proliferation, migration, and tube formation of human stem cell-derived cardiomyocytes. Biological analyses revealed that the secretome-encapsulated florescent Fe3O2 Silk sericin (Sec@MSS) hydrogel markedly reduced calcein-PI dual staining in cardiomyocytes, revealing significantly induced apoptosis. Furthermore, we evaluated the mitochondrial membrane potential for DOX and Sec@MSS hydrogel, and demonstrated apoptosis of the cardiomyocytes in the DOX-alone and Sec@MSS groups. However, the cardiotoxicity of Sec@MSS sericin was much lower than that in the DOX group, and was further evaluated via VEGFR and TUNEL analyses. The results indicate that Sec@MSS hydrogel might serve as an effective treatment agent in cardiac diseases in the future.


Molecules ◽  
2020 ◽  
Vol 25 (3) ◽  
pp. 532
Author(s):  
Alzbeta Filipova ◽  
Jan Marek ◽  
Radim Havelek ◽  
Jaroslav Pejchal ◽  
Marcela Jelicova ◽  
...  

The increasing risk of radiation exposure underlines the need for novel radioprotective agents. Hence, a series of novel 1-(2-hydroxyethyl)piperazine derivatives were designed and synthesized. Some of the compounds protected human cells against radiation-induced apoptosis and exhibited low cytotoxicity. Compared to the previous series of piperazine derivatives, compound 8 exhibited a radioprotective effect on cell survival in vitro and low toxicity in vivo. It also enhanced the survival of mice 30 days after whole-body irradiation (although this increase was not statistically significant). Taken together, our in vitro and in vivo data indicate that some of our compounds are valuable for further research as potential radioprotectors.


Sign in / Sign up

Export Citation Format

Share Document