scholarly journals An Iron Transporter Is Involved in Iron Homeostasis, Energy Metabolism, Oxidative Stress, and Metacyclogenesis in Trypanosoma cruzi

Author(s):  
Claudia F. Dick ◽  
Nathália Rocco-Machado ◽  
André L. A. Dos-Santos ◽  
Luiz F. Carvalho-Kelly ◽  
Carolina L. Alcantara ◽  
...  

The parasite Trypanosoma cruzi causes Chagas’ disease; both heme and ionic Fe are required for its optimal growth, differentiation, and invasion. Fe is an essential cofactor in many metabolic pathways. Fe is also harmful due to catalyzing the formation of reactive O2 species; for this reason, all living systems develop mechanisms to control the uptake, metabolism, and storage of Fe. However, there is limited information available on Fe uptake by T. cruzi. Here, we identified a putative 39-kDa Fe transporter in T. cruzi genome, TcIT, homologous to the Fe transporter in Leishmania amazonensis and Arabidopsis thaliana. Epimastigotes grown in Fe-depleted medium have increased TcIT transcription compared with controls grown in regular medium. Intracellular Fe concentration in cells maintained in Fe-depleted medium is lower than in controls, and there is a lower O2 consumption. Epimastigotes overexpressing TcIT, which was encountered in the parasite plasma membrane, have high intracellular Fe content, high O2 consumption—especially in phosphorylating conditions, high intracellular ATP, very high H2O2 production, and stimulated transition to trypomastigotes. The investigation of the mechanisms of Fe transport at the cellular and molecular levels will assist in elucidating Fe metabolism in T. cruzi and the involvement of its transport in the differentiation from epimastigotes to trypomastigotes, virulence, and maintenance/progression of the infection.

2004 ◽  
Vol 68 (3) ◽  
pp. 489-497 ◽  
Author(s):  
L. E. Mordberg

AbstractA Th-rich mineral of the crandallite group has been investigated from the weathering profile of the Schugorsk bauxite deposit, Timan, Russia. It occurs within thin (up to 0.5 mm) organic-rich veinlets together with ‘leucoxene’ in the form of small shapeless grains which vary in size from 1—2 mm to 60—70 mm. Rare grains disseminated among boehmite crystals were also found. Microprobe analyses determined that the ThO2 content can be as high as 18 wt.%. The mineral composition is intermediate between crandallite CaAl3H(PO4)2(OH)6, goyazite SrAl3H(PO4)2(OH)6, Th-crandallite and svanbergite SrAl3PO4SO4(OH)6 in the beudantite group.Comparatively high contents of Fe and Si and a very high positive Th and Fe content correlation (r = +0.98) suggest that the formula of the hypothetical Th-bearing end-member is ThFe3(PO4,SiO4)2(OH)6 with Th and Si substituting for REE and Prespectively (woodhouseite-type substitution). Another possible substitution is Th4+ + Ca2+ ⇋ 2REE3+ (florencite-type). A deficiency of cations in the X site can be explained by either the presence of carbon, undetectable by microprobe, in the crystal lattice or a lack of X-site cations due to radiation damage induced by Th. Some excess of cations in the B site (Al and Fe3+) can be explained by the presence of very small boehmite and hematite inclusions on the crandallite grain surfaces. Th-rich crandallite may be the result of alteration of an unidentified silicate mineral from the parent rock with a composition close to the simplified formula Fe2+ThSiO4(OH)2.


2017 ◽  
Vol 313 (3) ◽  
pp. G157-G165 ◽  
Author(s):  
Gautam Rishi ◽  
V. Nathan Subramaniam

The liver is one of the largest and most functionally diverse organs in the human body. In addition to roles in detoxification of xenobiotics, digestion, synthesis of important plasma proteins, gluconeogenesis, lipid metabolism, and storage, the liver also plays a significant role in iron homeostasis. Apart from being the storage site for excess body iron, it also plays a vital role in regulating the amount of iron released into the blood by enterocytes and macrophages. Since iron is essential for many important physiological and molecular processes, it increases the importance of liver in the proper functioning of the body’s metabolism. This hepatic iron-regulatory function can be attributed to the expression of many liver-specific or liver-enriched proteins, all of which play an important role in the regulation of iron homeostasis. This review focuses on these proteins and their known roles in the regulation of body iron metabolism.


2021 ◽  
Vol 22 (13) ◽  
pp. 6708
Author(s):  
Gonzalo Miyagusuku-Cruzado ◽  
Danielle M. Voss ◽  
M. Monica Giusti

Pyranoanthocyanins are anthocyanin-derived pigments with higher stability to pH and storage. However, their slow formation and scarcity in nature hinder their industrial application. Pyranoanthocyanin formation can be accelerated by selecting anthocyanin substitutions, cofactor concentrations, and temperature. Limited information is available on the impacts of the chemical structure of the cofactor and anthocyanin; therefore, we evaluated their impacts on pyranoanthocyanin formation efficiency under conditions reported as favorable for the reaction. Different cofactors were evaluated including pyruvic acid, acetone, and hydroxycinnamic acids (p-coumaric, caffeic, ferulic, and sinapic acid) by incubating them with anthocyanins in a molar ratio of 1:30 (anthocyanin:cofactor), pH 3.1, and 45 °C. The impact of the anthocyanin aglycone was evaluated by incubating delphinidin, cyanidin, petunidin, or malvidin derivatives with the most efficient cofactor (caffeic acid) under identical conditions. Pigments were identified using UHPLC-PDA and tandem mass spectrometry, and pyranoanthocyanin formation was monitored for up to 72 h. Pyranoanthocyanin yields were the highest with caffeic acid (~17% at 72 h, p < 0.05). When comparing anthocyanins, malvidin-3-O-glycosides yielded twice as many pyranoanthocyanins after 24 h (~20%, p < 0.01) as cyanidin-3-O-glycosides. Petunidin- and delphinidin-3-O-glycosides yielded <2% pyranoanthocyanins. This study demonstrated the importance of anthocyanin and cofactor selection in pyranoanthocyanin production.


2016 ◽  
Vol 8 (2) ◽  
pp. 11-14
Author(s):  
MAM Hossen ◽  
SA Lira ◽  
MY Mia ◽  
AKMM Rahman

Soil samples from high land, medium high land, medium low land and low land of Brahmaputra Floodplain area showed that pH of the soils were slightly acidic; organic matter (OM) content was medium; total nitrogen (N), available potassium (K) and boron (B) content were low; available phosphorus (P) content was very low; available sulfur (S) and calcium (Ca) content were medium to very high; magnesium (Mg) and zinc (Zn) content were low to optimum; copper (Cu), manganese (Mn) and iron (Fe) content were very high suggesting the fact that soils of this area is moderately suitable for agricultural uses.J. Environ. Sci. & Natural Resources, 8(2): 11-14 2015


Author(s):  
C. Rodgers

This paper describes the development of a subscale single stage centrifugal compressor with a dimensionless specific speed (Ns) of 1.8, originally designed for full size appllcatioa as a high volume flow, low pressure ratio, gas booster compressor. The specific stage is noteworthy in that it provides a benchmark representing the performance potential of very high specific speed compressors of which limited information is found in open literature. Stage & component test performance characteristics are presented together with traverse results at the impeller exit. Traverse test results were compared with recent CFD computational predictions, for a exploratory analytical callbration of a very high specific speed impeller geometry. The tested subscale (0.583) compressor essentially satisfied design performance expectations with an overall stage efficiency of 74% incinding, excessive exit casing losses. It was estimated that stage efficiency could be increased to 81% with exit casing losses halved.


2021 ◽  
Author(s):  
Devon Payne ◽  
Eric M. Shepard ◽  
Rachel L. Spietz ◽  
Katherine Steward ◽  
Sue Brumfield ◽  
...  

Methanogens have a high demand for iron (Fe) and sulfur (S); however, little is known of how they acquire, deploy, and store these elements and how this, in turn, affects their physiology. Methanogens were recently shown to reduce pyrite (FeS 2 ) generating aqueous iron-sulfide (FeS (aq) ) clusters that are likely assimilated as a source of Fe and S. Here, we compare the phenotype of Methanococcus voltae when grown with FeS 2 or ferrous iron (Fe(II)) and sulfide (HS - ). FeS 2 -grown cells are 33% smaller yet have 193% more Fe than Fe(II)/HS - -grown cells. Whole cell EPR revealed similar distributions of paramagnetic Fe, although FeS 2 -grown cells showed a broad spectral feature attributed to intracellular thioferrate-like nanoparticles. Differential proteomic analyses showed similar expression of core methanogenesis enzymes, indicating that Fe and S source does not substantively alter the energy metabolism of cells. However, a homolog of the Fe(II) transporter FeoB and its putative transcriptional regulator DtxR were up-expressed in FeS 2 -grown cells, suggesting that cells sense Fe(II) limitation. Two homologs of IssA, a protein putatively involved in coordinating thioferrate nanoparticles, were also up-expressed in FeS 2 -grown cells. We interpret these data to indicate that, in FeS 2 -grown cells, DtxR cannot sense Fe(II) and therefore cannot down-regulate FeoB. We suggest this is due to the transport of Fe(II) complexed with sulfide (FeS (aq) ) leading to excess Fe that is sequestered by IssA as a thioferrate-like species. This model provides a framework for the design of targeted experiments aimed at further characterizing Fe acquisition and homeostasis in M. voltae and other methanogens. IMPORTANCE FeS 2 is the most abundant sulfide mineral in the Earth’s crust and is common in environments inhabited by methanogenic archaea. FeS 2 can be reduced by methanogens, yielding aqueous FeS (aq) clusters that are thought to be a source of Fe and S. Here, we show that growth of Methanococcus voltae on FeS 2 results in smaller cell size and higher Fe content per cell, with Fe likely stored intracellularly as thioferrate-like nanoparticles. Fe(II) transporters and storage proteins were up-regulated in FeS 2 -grown cells. These responses are interpreted to result from cells incorrectly sensing Fe(II) limitation due to assimilation of Fe(II) as FeS (aq) . These findings have implications for our understanding of how Fe/S availability influences methanogen physiology and the biogeochemical cycling of these elements.


2021 ◽  
Author(s):  
Ruina Liu ◽  
Kai Zhang ◽  
Huan Li ◽  
Qinru Sun ◽  
Xin Wei ◽  
...  

Abstract Background Microorganisms inhabit and proliferate throughout the body both externally and internally, which are the primary mediators of putrefaction after death. However, limited information is available about the changes in the postmortem microbiota of extraintestinal body sites in the early decomposition stage of mammalian corpses. Results This study applied 16S rRNA barcoding to investigate microbial composition variations among different organs and the relationship between microbial communities and time since death over 1 day of decomposition. During 1 day of decomposition, Agrobacterium, Prevotella, Bacillus, and Turicibacter were regarded as time-relevant genera in internal organs at different timepoints. Pathways associated with lipid, amino acid, carbohydrate and terpenoid and polyketide metabolism were significantly enriched at 8 hours than that at 0.5 or 4 hours. The microbiome compositions and postmortem metabolic pathways differed by time since death, and more importantly, these alterations were organ specific. Conclusion The dominant microbes differed by organ, while they tended toward similarity as decomposition progressed. The observed thanatomicrobiome variation by body site provides new knowledge into decomposition ecology and forensic microbiology. Additionally, the microbes detected at 0.5 hours in internal organs may inform a new direction for organ transplantation.


Physiology ◽  
2006 ◽  
Vol 21 (2) ◽  
pp. 115-123 ◽  
Author(s):  
Adriana Donovan ◽  
Cindy N. Roy ◽  
Nancy C. Andrews

Iron is an essential element that is toxic when it accumulates in excess. Intricate regulatory mechanisms have evolved to maintain iron homeostasis within cells and between different tissues of complex organisms. This review discusses the proteins involved in iron transport and storage and their regulation in health and disease.


2021 ◽  
Author(s):  
Moataz Dowaidar

There is evidence that the VPS35 protein impacts degradation of dopaminergic (DA) neuron lifespan and that the D620N mutation is associated with a kind of Parkinson's disease (PD) mimicking idiopathic PD. The incidence of this mutation and the likely pathogenic effects of additional VPS35 variants is unclear. Other unusual VPS35 mutations may put people at risk for Parkinson's disease, but the level of risk has yet to be determined.Due to the functional and genetic links between VPS35 and other PD-associated genes, rare VPS35 variants may be a key extra component in developing the PD phenotype in people with other mutations with inadequate penetration. Genetic association analysis could remedy this issue in the near future.VPS35-associated PD neuropathology is another significant aspect. Since just one D620N mutant carrier has been studied at autopsy to date, limited information is available about the neuropathological spectrum of PD patients with VPS35 mutations. It is yet unknown if neuronal loss in VPS35-related PD occurs just in SNc or affects other brain areas such as locus coeruleus, cortex, hippocampus and other structures. Neuropathology of VPS35-D620N mice models demonstrated severe tau pathology and axonal degradation, but no evidence of SYN inclusions. It's uncertain if PD individuals with VPS35 mutations have the same features.More study on the role of VPS35 in enhancing DA neuron survival is also needed to better understand the metabolic pathways damaged by VPS35 mutations and identify new therapy goals. The D620N VPS35 KI model, paired with the parkinQ311X mouse model, is one of the first monogenic PD models to recapitulate the fundamental PD feature: DA neuronal breakdown in SNc. These mouse models can be used to identify and assess drug targets. Because the neurodegenerative molecular pathways in many types of Parkinson's disease are so similar, drugs that confer neuroprotection in VPS35 models could be studied in other, more common types of Parkinson's disease.


Sign in / Sign up

Export Citation Format

Share Document