scholarly journals Morphomolecular Characterization of Serum Nanovesicles From Microbiomes Differentiates Stable and Infarcted Atherosclerotic Patients

2021 ◽  
Vol 8 ◽  
Author(s):  
Camila Rodrigues Moreno ◽  
José Antonio Franchini Ramires ◽  
Paulo Andrade Lotufo ◽  
Alexandre Matos Soeiro ◽  
Luanda Mara da Silva Oliveira ◽  
...  

Microbial communities are considered decisive for maintaining a healthy situation or for determining diseases. Acute myocardial infarction (AMI) is an important complication of atherosclerosis caused by the rupture of atheroma plaques containing proinflammatory cytokines, reactive oxygen species, oxidized low-density lipoproteins (oxLDL), damaged proteins, lipids, and DNA, a microenvironment compatible with a pathogenic microbial community. Previously, we found that archaeal DNA-positive infectious microvesicles (iMVs) were detected in vulnerable plaques and in the sera of Chagas disease patients with heart failure. Now, we characterize and quantify the levels of serum microbiome extracellular vesicles through their size and content using morphomolecular techniques to differentiate clinical outcomes in coronary artery disease (CAD). We detected increased numbers of large iMVs (0.8–1.34 nm) with highly negative surface charge that were positive for archaeal DNA, Mycoplasma pneumoniae antigens and MMP9 in the sera of severe AMI patients, strongly favoring our hypothesis that pathogenic archaea may play a role in the worst outcomes of atherosclerosis. The highest numbers of EVs <100 nm (exosomes) and MVs from 100 to 200 nm in the stable atherosclerotic and control healthy groups compared with the AMI groups were indicative that these EVs are protective, entrapping and degrading infectious antigens and active MMP9 and protect against the development of plaque rupture.Conclusion: A microbiome with pathogenic archaea is associated with high numbers of serum iMVs in AMI with the worst prognosis. This pioneering work demonstrates that the morphomolecular characterization and quantification of iEVs in serum may constitute a promising serum prognostic biomarker in CAD.

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Rama Vara Prasad Chavali ◽  
B. Reshmarani

Abstract The current study examines the potential of lignosulfonate to enhance the engineering behavior of two locally available expansive soils. The expansive soils were collected from Vijayawada and Amaravathi, located in the Capital Region of Andhra Pradesh, India. The soils were treated with four different percentages (0.5, 1, 2, and 4) of lignosulfonate and were allowed to interact for 7 and 28 days. A series of laboratory tests such as unconfined compressive strength, cation exchange capacity and scanning electron microscopy were carried out on the soil specimens. The results indicated that lignosulfonate has significant influence on the strength behavior of expansive soils. The amount of fines content present in soils defines the optimum percentage of lignosulfonate. Lignosulfonate treatment resulted in reduced negative surface charge of soils and formation of Polymer chain microstructure along with flocculated or aggregated particle microstructure, which may attribute to the enhanced strength of the expansive soils.


1977 ◽  
Vol 23 (1) ◽  
pp. 285-297
Author(s):  
D. Blad ◽  
L. Winqvist ◽  
G. Dallner

The electrophoretic mobilities of rough and smooth microsomes were studied using free electrophoresis in a sucrose gradient. Rough microsomes have a higher net negative surface charge but removal of the ribosomes decreases their mobility to that of smooth microsomes. Treatment with neuraminidase and phospholipases C and D does not affect the mobility of total smooth microsomes, but this mobility is increased by approximately 20% after trypsin and papain treatment and by approximately 12% after phospholipase A treatment. Further treatment of trypsin-digested smooth microsomes with phospholipase C re-establishes the original mobility. This effect is not caused by the removal of lipid phosphate groups, but by the liberation of negatively charged protein species that are normally buried under trypsin-sensitive proteins. Low concentrations of trypsin also solubilize enzyme proteins from smooth liver microsomes of phenobarbital-treated rats, but the electrophoretic mobility is not increased, indicating structural differences between induced and control membranes.


2016 ◽  
Vol 11 (1) ◽  
pp. 380-386 ◽  
Author(s):  
Bohua Feng ◽  
Muhammad Aqeel Ashraf ◽  
Liufen Peng

AbstractCarboxymethyl chitosan grafted with ricinoleic acid (CMC-g-RA), an amphiphilic drug carrier, was synthetized, loaded with rotenone (Rot), and characterized for particles shape, zeta potential, loading efficiency and outdoor stability. Results show that as the ratio of carrier to drug increased, the formulation exhibited monodisperse nanoparticles negative surface charge. The loading efficiency of the formulation was up to 68%. The outdoor test also indicated that the formulation with the higher loading efficiency prevented Rot degradation in natural environments.


1970 ◽  
Vol 23 (02) ◽  
pp. 261-275 ◽  
Author(s):  
G Zbinden ◽  
J. N Mehrishi ◽  
S Tomlin

SummaryThe severity of platelet damage induced by hyper- and hypotonic NaCl solutions and freezing and thawing was assessed by microscopic evaluation and measuring inhibition of 5-HT uptake. The same techniques were used to quantitate the effects of aggregating agents. The positively charged macromolecules PS, Poly-L und Poly-O reduced the net negative surface charge as determined by microelectrophoresis, caused platelet aggregation and inhibited 5-HT uptake. The damaging effects of Poly-L and Poly-O were more severe and more closely related to concentration than that of PS. The negatively charged macromolecules Poly-IC and NaPS increased the anodic electrophoretic mobility. Poly-IC and heparin caused a low degree of platelet clumping and no inhibition of 5-HT uptake. NaPS produced severe platelet damage with extensive clumping and complete inhibition of 5-HT uptake. Na laurate had the same effect, but did not alter electrophoretic mobility. ADP caused concentration-dependent platelet aggregation and inhibition of 5-HT uptake. The effects of ADP and NaPS were compared in agitated and non-agitated platelet samples containing identical concentrations of the 2 compounds. Agitation was found to increase the degree of platelet clumping and to reduce 5-HT uptake.


1996 ◽  
Vol 34 (5-6) ◽  
pp. 309-316 ◽  
Author(s):  
X. S. Jia ◽  
Herbert H. P. Fang ◽  
H. Furumai

Changes of surface charge and extracellular polymer (ECP) content were investigated in batch experiments for three anaerobic sludges, each of which had been enriched at 35°C and pH 639-7.3 for more than 40 batches using propionate, butyrate and glucose, individually, as the sole substrate. Results showed that both ECP and the negative surface charge were dependent on the growth phase of microorganisms. They increased at the beginning of all batches when the microorganisms were in the prolific-growth phase, having high substrate concentration and food-to-microorganisms ratio. Both later gradually returned to their initial levels when the microorganisms were in the declined-growth phase, as the substrate became depleted. The negative surface charge increased linearly with the total-ECP content in all series with slopes of 0.0187, 0.0212 and 0.0157 meq/mg-total-ECP for sludge degrading propionate, butyrate and glucose, respectively. The change of surface charge for the first two sludges was mainly due to the increase of proteinaceous fraction of ECP; but, for glucose-degrading sludge, that could be due to the increases of both proteinaceous and carbohydrate fractions of ECP. The negative-charged nature of anaerobic sludge implies that cations should be able to promote granulation of anaerobic sludge.


Author(s):  
Elizabeth S. Radcliffe

The Introduction offers, first, a brief historical background to Hume’s theory of the passions, which is further elaborated in the APPENDIX. Foremost among the theses of the early modern rationalists—like Reynolds, Senault, Descartes, Cudworth, and Clarke—to which Hume is responding are: that many passions left unregulated lead to the pursuit of unsuitable objects, that reason can overcome the pernicious influence of the passions and control our actions, and that the passions are states that represent good and evil. Second, the Introduction presents a sketch of Hume’s characterization of reason and passion and his account of their relationship. Third, it explains the method of interpretation used in this book and previews its chapters. The approach is coherentist: to present an intelligible and consistent picture of Hume’s theory of passion and action, accounting for as many of the relevant texts as possible.


Robotica ◽  
2020 ◽  
pp. 1-18
Author(s):  
M. Garcia ◽  
P. Castillo ◽  
E. Campos ◽  
R. Lozano

SUMMARY A novel underwater vehicle configuration with an operating principle as the Sepiida animal is presented and developed in this paper. The mathematical equations describing the movements of the vehicle are obtained using the Newton–Euler approach. An analysis of the dynamic model is done for control purposes. A prototype and its embedded system are developed for validating analytically and experimentally the proposed mathematical representation. A real-time characterization of one mass is done to relate the pitch angle with the radio of displacement of the mass. In addition, first validation of the closed-loop system is done using a linear controller.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nicolas Barizien ◽  
Morgan Le Guen ◽  
Stéphanie Russel ◽  
Pauline Touche ◽  
Florent Huang ◽  
...  

AbstractIncreasing numbers of COVID-19 patients, continue to experience symptoms months after recovering from mild cases of COVID-19. Amongst these symptoms, several are related to neurological manifestations, including fatigue, anosmia, hypogeusia, headaches and hypoxia. However, the involvement of the autonomic nervous system, expressed by a dysautonomia, which can aggregate all these neurological symptoms has not been prominently reported. Here, we hypothesize that dysautonomia, could occur in secondary COVID-19 infection, also referred to as “long COVID” infection. 39 participants were included from December 2020 to January 2021 for assessment by the Department of physical medicine to enhance their physical capabilities: 12 participants with COVID-19 diagnosis and fatigue, 15 participants with COVID-19 diagnosis without fatigue and 12 control participants without COVID-19 diagnosis and without fatigue. Heart rate variability (HRV) during a change in position is commonly measured to diagnose autonomic dysregulation. In this cohort, to reflect HRV, parasympathetic/sympathetic balance was estimated using the NOL index, a multiparameter artificial intelligence-driven index calculated from extracted physiological signals by the PMD-200 pain monitoring system. Repeated-measures mixed-models testing group effect were performed to analyze NOL index changes over time between groups. A significant NOL index dissociation over time between long COVID-19 participants with fatigue and control participants was observed (p = 0.046). A trend towards significant NOL index dissociation over time was observed between long COVID-19 participants without fatigue and control participants (p = 0.109). No difference over time was observed between the two groups of long COVID-19 participants (p = 0.904). Long COVID-19 participants with fatigue may exhibit a dysautonomia characterized by dysregulation of the HRV, that is reflected by the NOL index measurements, compared to control participants. Dysautonomia may explain the persistent symptoms observed in long COVID-19 patients, such as fatigue and hypoxia. Trial registration: The study was approved by the Foch IRB: IRB00012437 (Approval Number: 20-12-02) on December 16, 2020.


Sign in / Sign up

Export Citation Format

Share Document