scholarly journals Re-Evaluating the Surface Rupture and Slip Distribution of the AD 1609 M7 1/4 Hongyapu Earthquake Along the Northern Margin of the Qilian Shan, NW China: Implications for Thrust Fault Rupture Segmentation

2021 ◽  
Vol 9 ◽  
Author(s):  
Xiongnan Huang ◽  
Xiaoping Yang ◽  
Haibo Yang ◽  
Zongkai Hu ◽  
Ling Zhang

The Hexi Corridor is located beyond the northeastern edge of the Tibetan Plateau, and it is bounded by a series of active thrusts along the northern margin of the Qilian Shan and the southern piedmont of the Longshou Shan. Historically, five destructive earthquakes have occurred along the Hexi Corridor, which indicates that this region poses high potential seismic risks. The 1609 Hongyapu earthquake occurred along the Fodongmiao-Hongyazi fault in the northern Qilian Shan, China, and it killed more than 840 people and destroyed a large number of buildings. Presently, there are different opinions as to the distribution and length of the surface rupture of this event along the Fudongmiao–Hongyazi fault. Thus, we searched all of the fault scarps on the Holocene surfaces and suspected surface rupture locations related to the 1609 earthquake based on previous studies and developed detailed remote-sensing interpretations along the fault. An abundance of north-facing scarps on the younger fans and terrace faces, slightly higher than the active modern stream bed, were found along the Fodongmiao-Hongyazi fault in the area ranging from the Hongshuiba River (39.52°N, 98.41°E) in the west to the Shuiguan River (39.07°N, 99.37°E) in the east. Based on our research, we estimate a surface rupture length as ∼98 km based on the distribution of the fault scarps on Late Holocene surfaces and constraints provided by age dating. Most of the surface ruptures are preserved as fault scarps and indicate an average vertical surface offset of ∼1.0 m, a value found consistently in three segments of the fault. The surface rupture features indicate that segments of the fault ruptured together coseismically during the 1609 earthquake, i.e., a multisegment rupture. Using the surface fault traces, length of 98 or 90 km (without the Shuiguan River section), dip of 30° inferred from previous reflection profiles, a rigidity of 3.3 × 1010 N/m2, and dip slip average as 1.9 m converted from our observations of the offsets, we computed the magnitude of this event as ca. Mw 7.2–Mw 7.4.

1988 ◽  
Vol 78 (2) ◽  
pp. 956-978
Author(s):  
William B. Bull ◽  
Philip A. Pearthree

Abstract Movements along the Pitaycachi fault since the Miocene juxtaposed different alluvial units and created 2- to 45-m-high fault scarps downslope from a pedimented mountain front prior to 1887. In 1887, a major earthquake formed a 75-km-long, 12- to 4-m-high scarp along the trace of prehistoric surface ruptures. Diverse evidence from many study sites indicates that about 200,000 yr elapsed between the prior (youngest Pleistocene) event and the 1887 surface rupture. Cumulative displacements of Pliocene(?) to mid-Pleistocene alluvial fans and stream terraces decrease with decreasing age. The trace of the prior rupture was largely buried by sheets of late Pleistocene and Holocene piedmont alluvium. Late Pleistocene soils are offset about the same amount as the height of the 1887 scarp. Valleys that are as much as 40 m deep and 0.5 to 0.9 km wide have been eroded since the prior event; they contain multiple late Pleistocene and Holocene stream terraces that were not faulted until 1887. Pre-1887 alluvial fault scarps were degraded to 2° to 9° slopes before the 1887 event, even in resistant materials such as clay-rich soil horizons with unweathered rhyolite cobbles and calcrete. Scarp height-maximum slope regressions and diffusion-equation analyses for reconstructed pre-1887 scarp profiles indicate that the prior event occurred more than 100,000 yr ago. Acceleration of scarp degradation rates during the Holocene, and/or relatively resistant materials exposed in the scarps, would increase the age estimates to 200,000 yr or more. Very long recurrence intervals are the characteristic style of movement on the Pitaycachi fault. At one site, six ages of diverse valley fills were inset into pedimented granodiorite upslope from the fault between the prior and 1887 events. Only 3 m of relief remained before the 1887 rupture increased the scarp height from 3 to 6 m. Some hillslopes have triangular talus facets of carbonatecemented colluvium that resulted from infrequent fault movements and intervening periods of erosion. Smooth hillsides of resistant volcanic rocks between the facets show that virtually all of the prior surface-rupture event scarps had been removed by prolonged slope degradation.


Author(s):  
Haibin Yang ◽  
Mark Quigley ◽  
Tamarah King

Earthquake ground surface ruptures provide insights into faulting mechanics and inform seismic hazard analyses. We analyze surface ruptures for 11 historical (1968−2018) moment magnitude (Mw) 4.7−6.6 reverse earthquakes in Australia using statistical techniques and compare their characteristics with magnetic, gravity, and stress trajectory data sets. Of the total combined (summative) length of all surface ruptures (∼148 km), 133 km (90%) to 145 km (98%) align with the geophysical structure in the host basement rocks. Surface rupture length (SRL), maximum displacement (MD), and probability of surface rupture at a specified Mw are high compared with equivalent Mw earthquakes globally. This is attributed to (1) a steep cratonic crustal strength gradient at shallow depths, promoting shallow hypocenters (∼1−6 km) and limiting downdip rupture widths (∼1−8.5 km), and (2) favorably aligned crustal anisotropies (e.g., bedrock foliations, faults, fault intersections) that enhanced lateral rupture propagation and/or surface displacements. Combined (modeled and observed) MDs are in the middle third of the SRL with 68% probability and either the ≤33rd or ≥66th percentiles of SRL with 16% probability. MD occurrs proximate to or directly within zones of enhanced fault geometric complexity (as evidenced from surface ruptures) in 8 of 11 earthquakes (73%). MD is approximated by 3.3 ± 1.6 (1σ) × AD (average displacement). S-transform analyses indicates that high-frequency slip maxima also coincide with fault geometric complexities, consistent with stress amplifications and enhanced slip variability due to geometric and kinematic interactions with neighboring faults. Rupture slip taper angles exhibite large variations (−90% to +380% with respect to the mean value) toward rupture termini and are steepest where ruptures terminate at obliquely oriented magnetic lineaments and/or lithology changes. Incremental slip approximates AD between the 10th and 90th percentiles of the SRL. The average static stress drop of the studied earthquakes is 4.8 ± 2.8 MPa. A surface rupture classification scheme for cratonic stable regions is presented to describe the prevailing characteristics of intraplate earthquakes across diverse crustal structural-geophysical settings. New scaling relationships and suggestions for logic tree weights are provided to enhance probabilistic fault displacement hazard analyses for bedrock-dominated intraplate continental regions.


2011 ◽  
Vol 05 (04) ◽  
pp. 329-342 ◽  
Author(s):  
YONG LI ◽  
RONGJUN ZHOU ◽  
ALEXANDER L. DENSMORE ◽  
SHUYOU CAO ◽  
YUPING LIU

During the M s 8.0 Wenchuan Earthquake of May 12, 2008, three distinct faults in the Longmen Shan along the eastern margin of the Tibetan Plateau ruptured. We have carried out detailed field geological mapping on these faults (the Yingxiu-Beichuan, the Pengxian-Guanxian, and the Xiaoyudong Faults), as well as the minor Leigu Fault, using GPS and total station surveys. The surface rupture of the Wenchuan Earthquake consists of two margin-parallel thrust faults linked by the Xiaoyudong tear fault. By comparing the features of the surface rupture of the faults, the spatial relationships between the different surface ruptures can be determined. It is clear that the margin-parallel thrust faults are linked at depth, forming an imbricated thrust linked by a tear fault.


Geosciences ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 408 ◽  
Author(s):  
King ◽  
Quigley ◽  
Clark

We digitize surface rupture maps and compile observational data from 67 publications on ten of eleven historical, surface-rupturing earthquakes in Australia in order to analyze the prevailing characteristics of surface ruptures and other environmental effects in this crystalline basement-dominated intraplate environment. The studied earthquakes occurred between 1968 and 2018, and range in moment magnitude (Mw) from 4.7 to 6.6. All earthquakes involved co-seismic reverse faulting (with varying amounts of strike-slip) on single or multiple (1–6) discrete faults of ≥ 1 km length that are distinguished by orientation and kinematic criteria. Nine of ten earthquakes have surface-rupturing fault orientations that align with prevailing linear anomalies in geophysical (gravity and magnetic) data and bedrock structure (foliations and/or quartz veins and/or intrusive boundaries and/or pre-existing faults), indicating strong control of inherited crustal structure on contemporary faulting. Rupture kinematics are consistent with horizontal shortening driven by regional trajectories of horizontal compressive stress. The lack of precision in seismological data prohibits the assessment of whether surface ruptures project to hypocentral locations via contiguous, planar principal slip zones or whether rupture segmentation occurs between seismogenic depths and the surface. Rupture centroids of 1–4 km in depth indicate predominantly shallow seismic moment release. No studied earthquakes have unambiguous geological evidence for preceding surface-rupturing earthquakes on the same faults and five earthquakes contain evidence of absence of preceding ruptures since the late Pleistocene, collectively highlighting the challenge of using mapped active faults to predict future seismic hazards. Estimated maximum fault slip rates are 0.2–9.1 m Myr-1 with at least one order of uncertainty. New estimates for rupture length, fault dip, and coseismic net slip can be used to improve future iterations of earthquake magnitude—source size—displacement scaling equations. Observed environmental effects include primary surface rupture, secondary fracture/cracks, fissures, rock falls, ground-water anomalies, vegetation damage, sand-blows / liquefaction, displaced rock fragments, and holes from collapsible soil failure, at maximum estimated epicentral distances ranging from 0 to ~250 km. ESI-07 intensity-scale estimates range by ± 3 classes in each earthquake, depending on the effect considered. Comparing Mw-ESI relationships across geologically diverse environments is a fruitful avenue for future research.


Solid Earth ◽  
2014 ◽  
Vol 5 (2) ◽  
pp. 837-849 ◽  
Author(s):  
D. Díaz ◽  
A. Maksymowicz ◽  
G. Vargas ◽  
E. Vera ◽  
E. Contreras-Reyes ◽  
...  

Abstract. The crustal-scale west-vergent San Ramón thrust fault system, which lies at the foot of the main Andean Cordillera in central Chile, is a geologically active structure with manifestations of late Quaternary complex surface rupture on fault segments along the eastern border of the city of Santiago. From the comparison of geophysical and geological observations, we assessed the subsurface structural pattern that affects the sedimentary cover and rock-substratum topography across fault scarps, which is critical for evaluating structural models and associated seismic hazard along the related faults. We performed seismic profiles with an average length of 250 m, using an array of 24 geophones (Geode), with 25 shots per profile, to produce high-resolution seismic tomography to aid in interpreting impedance changes associated with the deformed sedimentary cover. The recorded travel-time refractions and reflections were jointly inverted by using a 2-D tomographic approach, which resulted in variations across the scarp axis in both the velocities and the reflections that are interpreted as the sedimentary cover-rock substratum topography. Seismic anisotropy observed from tomographic profiles is consistent with sediment deformation triggered by west-vergent thrust tectonics along the fault. Electrical soundings crossing two fault scarps were used to construct subsurface resistivity tomographic profiles, which reveal systematic differences between lower resistivity values in the hanging wall with respect to the footwall of the geological structure, and clearly show well-defined east-dipping resistivity boundaries. These boundaries can be interpreted in terms of structurally driven fluid content change between the hanging wall and the footwall of the San Ramón fault. The overall results are consistent with a west-vergent thrust structure dipping ~55° E in the subsurface beneath the piedmont sediments, with local complexities likely associated with variations in fault surface rupture propagation, fault splays and fault segment transfer zones.


Geosciences ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 451
Author(s):  
Nasim Mozafari ◽  
Çağlar Özkaymak ◽  
Dmitry Tikhomirov ◽  
Susan Ivy-Ochs ◽  
Vasily Alfimov ◽  
...  

This study reports on the cosmogenic 36Cl dating of two normal fault scarps in western Turkey, that of the Manastır and Mugırtepe faults, beyond existing historical records. These faults are elements of the western Manisa Fault Zone (MFZ) in the seismically active Gediz Graben. Our modeling revealed that the Manastır fault underwent at least two surface ruptures at 3.5 ± 0.9 ka and 2.0 ± 0.5 ka, with vertical displacements of 3.3 ± 0.5 m and 3.6 ± 0.5 m, respectively. An event at 6.5 ± 1.6 ka with a vertical displacement of 2.7 ± 0.4 m was reconstructed on the Mugırtepe fault. We attribute these earthquakes to the recurring MFZ ruptures, when also the investigated faults slipped. We calculated average slip rates of 1.9 and 0.3 mm yr−1 for the Manastır and Mugırtepe faults, respectively.


2018 ◽  
Vol 34 (4) ◽  
pp. 1585-1610 ◽  
Author(s):  
Stefano Gori ◽  
Emanuela Falcucci ◽  
Fabrizio Galadini ◽  
Paolo Zimmaro ◽  
Alberto Pizzi ◽  
...  

The three mainshock events (M6.1 24 August, M5.9 26 October, and M6.5 30 October 2016) in the Central Italy earthquake sequence produced surface ruptures on known segments of the Mt. Vettore–Mt. Bove normal fault system. As a result, teams from Italian national research institutions and universities, working collaboratively with the U.S. Geotechnical Extreme Events Reconnaissance Association (GEER), were mobilized to collect perishable data. Our reconnaissance approach included field mapping and advanced imaging techniques, both directed towards documenting the location and extent of surface rupture on the main fault exposure and secondary features. Mapping activity occurred after each mainshock (with different levels of detail at different times), which provides data on the progression of locations and amounts of slip between events. Along the full length of the Mt. Vettore–Mt. Bove fault system, vertical offsets ranged from 0–35 cm and 70–200 cm for the 24 August and 30 October events, respectively. Comparisons between observed surface rupture displacements and available empirical models show that the three events fit within expected ranges.


Sign in / Sign up

Export Citation Format

Share Document