scholarly journals Effect of EPA on Neonatal Pig Sertoli Cells “In Vitro”: A Possible Treatment to Help Maintain Fertility in Pre-Pubertal Boys Undergoing Treatment With Gonado-Toxic Therapies

2021 ◽  
Vol 12 ◽  
Author(s):  
Iva Arato ◽  
Veronica Ceccarelli ◽  
Francesca Mancuso ◽  
Catia Bellucci ◽  
Cinzia Lilli ◽  
...  

The incidence of cancer in pre-pubertal boys has significantly increased and, it has been recognized that the gonado-toxic effect of the cancer treatments may lead to infertility. Here, we have evaluated the effects on porcine neonatal Sertoli cells (SCs) of three commonly used chemotherapy drugs; cisplatin, 4-Hydroperoxycyclophosphamide and doxorubicin. All three drugs induced a statistical reduction of 5-hydroxymethylcytosine in comparison with the control group, performed by Immunofluorescence Analysis. The gene and protein expression levels of GDNF, were significantly down-regulated after treatment to all three chemotherapy drugs comparison with the control group. Specifically, differences in the mRNA levels of GDNF were: 0,8200 ± 0,0440, 0,6400 ± 0,0140, 0,4400 ± 0,0130 fold change at 0.33, 1.66, and 3.33μM cisplatin concentrations, respectively (**p < 0.01 at 0.33 and 1.66 μM vs SCs and ***p < 0.001 at 3.33μM vs SCs); 0,6000 ± 0,0340, 0,4200 ± 0,0130 fold change at 50 and 100 μM of 4-Hydroperoxycyclophosphamide concentrations, respectively (**p < 0.01 at both these concentrations vs SCs); 0,7000 ± 0,0340, 0,6200 ± 0,0240, 0,4000 ± 0,0230 fold change at 0.1, 0.2 and 1 µM doxorubicin concentrations, respectively (**p < 0.01 at 0.1 and 0.2 μM vs SCs and ***p < 0.001 at 1 μM vs SCs). Differences in the protein expression levels of GDNF were: 0,7400 ± 0,0340, 0,2000 ± 0,0240, 0,0400 ± 0,0230 A.U. at 0.33, 1.66, and 3.33μM cisplatin concentrations, respectively (**p < 0.01 at both these concentrations vs SCs); 0,7300 ± 0,0340, 0,4000 ± 0,0130 A.U. at 50 and 100 μM of 4- Hydroperoxycyclophosphamide concentrations, respectively (**p < 0.01 at both these concentrations vs SCs); 0,6200 ± 0,0340, 0,4000 ± 0,0240, 0,3800 ± 0,0230 A.U. at 0.l, 0.2 and 1 µM doxorubicin concentrations, respectively (**p < 0.01 at 0.1 and 0.2 μM vs SCs and ***p < 0.001 at 1 μM vs SCs). Furthermore, we have demonstrated the protective effect of eicosapentaenoic acid on SCs only at the highest concentration of cisplatin, resulting in an increase in both gene and protein expression levels of GDNF (1,3400 ± 0,0280 fold change; **p < 0.01 vs SCs); and of AMH and inhibin B that were significantly recovered with values comparable to the control group. Results from this study, offers the opportunity to develop future therapeutic strategies for male fertility management, especially in pre-pubertal boys.

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2161-2161
Author(s):  
Jaira F. de Vasconcellos ◽  
Y. Terry Lee ◽  
Colleen Byrnes ◽  
Laxminath Tumburu ◽  
Antoinette Rabel ◽  
...  

Abstract HMGA2 is a member of the high-mobility group A family and plays a role in the regulation of gene transcription and chromatin structure. HMGA2 is a validated target of the let-7 family of miRNAs. Let-7 miRNAs are highly regulated in erythroid cells during the fetal-to-adult developmental transition (1). Recent studies demonstrated that the LIN28 -let-7 axis mediated up-regulation of fetal hemoglobin (HbF) expression to >30% of the total globin levels in cultured erythroblasts from adult humans (2) and the amelioration of hypoxia-related sickling of cultured mature erythrocytes from pediatric patients with sickle cell disease (3). Interestingly, increased expression of endogenous HbF in a patient receiving gene therapy was also associated with truncated HMGA2 protein expression after lentiviral integration and disruption of let-7 targeting at the HMGA2 gene locus (4). Therefore, we hypothesized that HMGA2 may be involved in fetal hemoglobin regulation as a downstream target of the let-7 miRNAs. To study the effects of HMGA2 upon erythropoiesis and globin expression, lentiviral constructs were designed for let-7 resistant expression of HMGA2 driven by the erythroid-specific gene promoter region of the human SPTA1 gene (HMGA2 -SPTA1-OE), with a matched empty vector control. Transductions were performed in CD34+ cells from four adult healthy volunteers cultivated ex vivo in erythropoietin-supplemented serum-free media for 21 days. Overexpression of HMGA2 was confirmedby Q-RT-PCR (control: below detection limits; HMGA2 -SPTA1-OE: 2.51E+04 ± 3.44E+04 copies/ng) and Western blot analyses at culture day 14. Cell counting revealed no significant changes between HMGA2 -SPTA1-OE and control (empty vector) transductions at culture day 14. Terminal maturation with loss of CD71 from the erythroblast cell surface and enucleation assessed by thiazole orange staining were analyzed in the control and HMGA2 -SPTA1 -OE samples at the end of the culture period. Globin genes expression levels were evaluated for HMGA2 -SPTA1-OE by Q-RT-PCR. HMGA2 -SPTA1-OE caused a significant increase in gamma-globin mRNA expression levels compared to controls (control: 5.02E+05 ± 8.62E+04 copies/ng; HMGA2 -SPTA1-OE: 1.45E+06 ± 7.31E+05 copies/ng; p=0.037). Consistent with the increase in gamma-globin mRNA levels, HPLC analyses at culture day 21 demonstrated modest but significant increases in HbF levels in HMGA2 -SPTA1-OE compared to controls (HbF control: 5.41 ± 2.15%; HMGA2 -SPTA1-OE: 16.53 ± 4.43%; p=0.006). Possible effect(s) and downstream mechanism(s) triggered by HMGA2 -SPTA1-OE were investigated. Q-RT-PCR analyses demonstrated no significant changes in the let-7 family of miRNAs in HMGA2 -SPTA1-OE compared to controls. Expression patterns of several transcription factors such as BCL11A, KLF1, SOX6 and GATA1 were investigated by Q-RT-PCR and no significant changes were detected in HMGA2 -SPTA1-OE compared to controls. While BCL11A mRNA levels were decreased by HMGA2 -SPTA1 -OE, the differences did not reach statistical significance (control: 4.26E+02 ± 8.18E+01 copies/ng; HMGA2 -SPTA1 -OE: 2.84E+02 ± 1.48E+02 copies/ng; p=0.104). However, nuclear BCL11A protein levels assessed by Western analysis were suppressed in HMGA2 -SPTA1 -OE. In summary, these results demonstrate that HMGA2, a validated target of let-7 miRNAs, causes moderately increased gamma-globin gene and protein expression in human erythroblasts, and reduces levels of BCL11A protein. These data thus support the notion that suppression of let-7 miRNAs increases fetal hemoglobin, in part, by the targeting of erythroblast HMGA2 mRNA. (1) Noh SJ et al. J Transl Med. 7:98 (2009). (2) Lee YT et al. Blood. 122:1034-41 (2013). (3) Vasconcellos JF et al. PLoS One. 9:e106924 (2014). (4) Cavazzana-Calvo M et al. Nature. 467:318-22 (2010). Disclosures No relevant conflicts of interest to declare.


2020 ◽  
Vol 2020 ◽  
pp. 1-11 ◽  
Author(s):  
Joel J. Toledo Mauriño ◽  
Gabriela Fonseca-Camarillo ◽  
Janette Furuzawa-Carballeda ◽  
Rafael Barreto-Zuñiga ◽  
Braulio Martínez Benítez ◽  
...  

Introduction. TRPVs are a group of receptors with a channel activity predominantly permeable to Ca2+. This subfamily is involved in the development of gastrointestinal diseases such as ulcerative colitis (UC). The aim of the study was to characterize the gene and protein expression of the TRPV subfamily in UC patients and controls. Methods. We determined by quantitative PCR the gene expression of TRPV2, TRPV3, TRPV4, TRPV5, and TRPV6 in 45 UC patients (29 active UC and 16 remission UC) and 26 noninflamed controls. Protein expression was evaluated in 5 μm thick sections of formalin-fixed, paraffin-embedded tissue from 5 customized severe active UC patients and 5 control surgical specimens. Results. TRPV2 gene expression was increased in the control group compared with active UC and remission patients (P=0.002 and P=0.05, respectively). TRPV3 gene expression was significantly higher in controls than in active UC patients (P=0.002). The gene expression of TRPV4 was significantly higher in colonic tissue from patients with remission UC compared with active UC patients (P=0.05) and controls (P=0.005). TRPV5 had significantly higher mRNA levels in a control group compared with active UC patients (P=0.02). The gene expression of TRPV6 was significantly higher in the colonic tissue from patients with active UC compared with the control group (P=0.05). The protein expression of TRPV2 was upregulated in the mucosa and submucosa from the controls compared with the UC patients (P≤0.003). The protein expression of TRPV3 and TRPV4 was upregulated in all intestinal layers from the controls compared with the UC patients (P<0.001). TRPV5 was upregulated in the submucosa and serosa from the controls vs. UC patients (P<0.001). TRPV6 was upregulated in all intestinal layers from the UC patients vs. controls (P≤0.001). Conclusion. The TRPV subfamily clearly showed a differential expression in the UC patients compared with the controls, suggesting their role in the pathophysiology of UC.


2021 ◽  
Vol 21 ◽  
Author(s):  
Marc Ingenwerth ◽  
Péter Nyirády ◽  
Boris Hadaschik ◽  
Tibor Szarvas ◽  
Henning Reis

Background: Expression levels of collagens have been implicated in the progression of various cancers and interact with cytokeratins, but are not well studied in bladder cancer (BC). Therefore, we analyzed the gene and protein expression levels of collagen 1A1 (Col1a1/COL1A1), collagen 3A1 (col3a1/COL3A1), collagen 5A2 (col5a2/COL5A2), cytokeratin 14 (krt14/CK14), and cytokeratin 17 (krt17/CK17) in urothelial BC samples of different stages. Methods: In total, 102 fresh frozen and 190 formalin fixed and paraffin embedded (FFPE) samples were tested using immunohistochemistry and RT-qPCR. Expression levels were correlated to clinicopathological and follow-up data. Results: Col1a1, col3a1, col5a2 and krt14 mRNA levels were significantly overexpressed in high-grade and muscle-invasive BC (MIBC) compared to low-grade and non-muscle invasive BC (NMIBC) cases. Disease-specific survival (DSS) was shorter in patients with high expression levels of col1a1 (p = 0.004), col3a1 (p = 0.004), and col5a2 (p = 0.028). CK14 (p = 0.020), COL3A1 (p = 0.006) and Col5A2 (p = 0.006) protein expression levels were significantly higher and protein expression levels of CK17 (p = 0.05) significantly lower in MIBC compared to NMIBC. Furthermore, CK14 (p = 0.002) and COL5A2 (p = 0.006) protein expressions were significantly higher in high-grade compared to low-grade BC. DSS was shorter in patients with high expression levels of COL5A2 (p = 0.033) and CK14 (p = 0.042). Conclusion: Expression changes of collagens and cytokeratins are univariable prognostic markers in BC.


2020 ◽  
Vol 12 (4) ◽  
pp. 536-542
Author(s):  
Lijuan Zhao ◽  
Fei Wang ◽  
Wei Fan

This study was established to investigate the effects of cisplatin nano-liposomes on the apoptosis of the human retinoblastoma (RB) cell line Y79 in vitro and in vivo. Y79 cells were cultured and then exposed to Annexin V/PI to test their apoptosis, tested with the Caspase-3 activity detection kit to examine the change in activity of Caspase-3, and subjected to western blotting to test Bcl-2 and Bax protein expression. Y79-cell-transplanted tumor model in nude mice was also established and divided into three groups, with five nude mice in each. Cisplatin nano-liposomes were applied to the experimental group, cisplatin was injected into the control group, while saline was administered to the blank group, after which the nude mice were killed and the tumor was removed. Tumor volumes and weights in the three groups were compared. Nucleic acid extraction from magnetic beads was adopted to extract DNA, RT-PCR was employed to test Bcl-2 and Bax mRNA levels in tumor tissues, and in situ cell death assay kit was applied to test apoptotic cells. In comparison to the cisplatin solution and DMSO groups, the cisplatin liposome group showed higher Y79 apoptotic rate, Caspase-3 activity, and Bax protein expression, and lower Bcl-2 protein expression (all P < 0 05). In comparison with the control and blank groups, the experimental group showed lower tumor volume, weight, and Bcl-2 mRNA level of nude mice. In addition, in comparison with the control group, the experimental group showed higher cellular apoptotic rate and Bax mRNA level. In terms of the clinical effects of cisplatin nano-liposomes on a tumor transplant in nude mice with cervical cancer, they were shown to promote tumor apoptosis.


2019 ◽  
Vol 2019 ◽  
pp. 1-13
Author(s):  
Liang Yang ◽  
Yuguang Wang ◽  
Huanhua Xu ◽  
Guangyao Huang ◽  
Zhaoyan Zhang ◽  
...  

To investigate the effects of P. ginseng C.A. Mey (P. ginseng) on the metabolism of diester alkaloids and explore the potential mechanism. P. ginseng was administered orally to rats for 7 days, after which liver microsome samples were prepared and then incubated with diester alkaloids. Ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry was used to determinate the concentration of diester alkaloids to calculate the clearance rate. The cocktail method was used to evaluate the effects of oral administration of P. ginseng extracts on the activities of cytochrome P450 (CYP) isoforms in rats through the changes in the pharmacokinetic parameters of the probe drugs. The protein and gene expression of CYP3A2 and pregnane X receptor (PXR) in rats were evaluated by western blotting and quantitative PCR. The specific enzyme inhibitor method and human recombinant enzyme method were used to identify the involvement of sub-CYPs in the metabolism of diester alkaloids in human liver microsomes (HLMs). The clearances of aconitine, mesaconitine, and hypaconitine in the P. ginseng groups were lower than those of the control group. The areas under the curve of midazolam were 2.37 ± 1.05, 4.96 ± 0.51, and 6.23 ± 1.30 mg·L−1·h for the low-, medium-, and high-dose P. ginseng groups, respectively, which were higher than that of the control (2.23 ± 0.64 mg·L−1·h). The clearances of midazolam for the medium- (1.87 ± 0.16 L·h−1·kg−1) and high-dose (1.60 ± 0.34 L·h−1·kg−1) P. ginseng groups were lower than that of the control group (4.66 ± 1.43 L·h−1·kg−1). After exposure to P. ginseng extracts, the gene and protein expression levels of CYP3A4 and PXR were decreased. The hepatic metabolism rates of aconitine, mesaconitine, and hypaconitine in HLMs were decreased to 60.37%, 21.67%, and 10.11%, respectively, when incubated with ketoconazole, a specific inhibitor for CYP3A. The kinetic plots indicated that the KM and Vmax values of CYP3A4 were 10.08 ± 3.26 μM and 0.12 ± 0.01nmol·mg protein−1·min−1 for aconitine, 131.3 ± 99.75 μM and 0.73 ± 0.44 nmol·mg protein−1·min−1 for mesaconitine, and 17.05 ± 9.70 μM and 0.16 ± 0.04 nmol·mg protein−1·min−1 for hypaconitine, respectively. The in vitro mean intrinsic clearance rates by CYP3A4 were 0.0119, 0.0056, and 0.0091 mL·nmol CYP−1·min−1 for aconitine, mesaconitine, and hypaconitine, respectively. Therefore we implied that P. ginseng inhibited the metabolism of diester alkaloids in vitro and decreased the CYP3A4 enzyme activity as well as the gene and protein expression of CYP3A4 and PXR in vivo. CYP3A4 had a larger effect on diester alkaloid metabolism than the other human CYP isoforms, CYP1A2, CYP2C9, and CYP2E1.


2021 ◽  
Vol 49 (3) ◽  
pp. 030006052199767
Author(s):  
Ying Hu ◽  
Qing-Wei Zhao ◽  
Zheng-Cai Wang ◽  
Qing-Qing Fang ◽  
He Zhu ◽  
...  

Objective To investigate if co-transfection of human bone morphogenetic protein 2 (BMP-2, BMP2) and human fibroblast growth factor 2 (FGF2, FGF2) via chitosan nanoparticles promotes osteogenesis in human adipose tissue-derived stem cells (ADSCs) in vitro. Materials and Methods Recombinant BMP2 and/or FGF2 expression vectors were constructed and packaged into chitosan nanoparticles. The chitosan nanoparticles were characterized by atomic force microscopy. Gene and protein expression levels of BMP-2 and FGF2 in ADSCs in vitro were evaluated by real-time polymerase chain reaction (PCR), western blot, and enzyme-linked immunosorbent assay. Osteocalcin (OCN) and bone sialoprotein (BSP) gene expression were also evaluated by real-time PCR to assess osteogenesis. Results The prepared chitosan nanoparticles were spherical with a relatively homogenous size distribution. The BMP2 and FGF2 vectors were successfully transfected into ADSCs. BMP-2 and FGF2 mRNA and protein levels were significantly up-regulated in the co-transfection group compared with the control group. OCN and BSP mRNA levels were also significantly increased in the co-transfection group compared with cells transfected with BMP2 or FGF2 alone, suggesting that co-transfection significantly enhanced osteogenesis. Conclusions Co-transfection of human ADSCs with BMP2/FGF2 via chitosan nanoparticles efficiently promotes the osteogenic properties of ADSCs in vitro.


2021 ◽  
Author(s):  
Juanfang Liu ◽  
Jianhao Zhang ◽  
Shanshan Xie ◽  
Yingxia Liu ◽  
Xueliang Zhou ◽  
...  

Abstract Background: The purpose of this study was to verify physiological, end-organ and systemic inflammatory changes in zone II after resuscitative endovascular balloon occlusion of the aorta (REBOA) in a normovolemic rabbit model.Methods: Anaesthetized rabbits were subjected to aortic balloon occlusion for different times (15 min, 30 min, 60 min and 90 min) followed by 2 h of reperfusion. Rabbits with no balloon occlusion were set as the control group. ELISAs were used to examine the serum levels of ALT, AST, Cr, BUN, MDA, SOD, IL-8, IL-6, and TNF-α; HE staining was used to identify the morphological changes in the kidney; RT-PCR was used to detect the mRNA levels of IL-6, IL-8, TNF-α and NF-κB in the kidney and uterus; and Western blotting was used to measure the protein expression levels of IL-6, IL-8, TNF-α and NF-κB in the kidney and uterus.Results: Plasma concentrations of liver markers, kidney markers, inflammatory factors and oxidative stress indicators were significantly increased at the end of reperfusion in the 30 min, 60 min and 90 min groups. Damage to the kidney occurred in the 30 min, 60 min and 90 min groups. The mRNA and protein expression levels of IL-6, IL-8, TNF-α and NF-κB in the kidney and uterus were significantly increased at the end of reperfusion in the 30 min group, and as the time of occlusion extended, these levels continued to increase.Conclusion: Activation of systemic inflammation and ischaemia-reperfusion injury of end-organs occurred when the occlusion time reached 30 min. Therefore, 15 min should be regarded as a safe period of REBOA in zone II.


2009 ◽  
Vol 21 (1) ◽  
pp. 207
Author(s):  
M. Sakatani ◽  
K. Yamanaka ◽  
M. Takahashi

In a previous study, we reported that 8-cell-stage embryos exposed to a temperature of 41°C for 6 h had significantly increased embryonic mortality and intracellular reactive oxygen species (ROS). There have been some reports that ROS regulates the expression of genes encoding antioxidant enzymes in culture cells. In this study, we investigated the gene and protein expression of antioxidant enzymes in bovine 8-cell-stage embryos exposed to heat shock. In vitro-produced bovine embryos were used for the experiment. Embryos were cultured with CR1aa + 5% FCS at 38.5°C in 5% CO2 and 5% O2. On Day 2 after fertilization, 8-cell-stage embryos were exposed to heat shock at 41°C in 5% CO2 and 5% O2 for 6 h (HS). Eight-cell-stage embryos cultured at 38.5°C in 5% CO2 and 5% O2 were sampled at the same collection time as controls. After HS, 20 embryos were immediately collected for gene expression analysis. Expression of heat shock protein 70 (HSP70), CuZn-containing superoxide dismutase (SOD), catalase (CAT), and glutathione peroxide (GPx) genes was examined by real-time polymerase chain reaction. Twenty embryos were also collected after 3 h of HS (3 h) and at 18 h after HS (18 h) to evaluate the expression of proteins. Expression of HSP70, SOD, and CAT proteins was examined by Western blotting. Both the gene and protein expression levels of HS groups were normalized to those of the controls to obtain the relative expression levels. All results were analyzed by Student’s t-test. Expression of the HSP70 gene significantly increased in HS embryos (P < 0.05). Expression of the SOD and CAT genes tended to increase in HS embryos (P < 0.07), but there were no significant differences in expression of the GPx gene. There was no significant difference in protein expression in all the antioxidant enzymes in 3-h-sampled embryos. Expression of the HSP70 protein increased significantly in heat-shocked embryos sampled at 18 h (P < 0.05). These results indicate that expression of antioxidant enzymes was not greatly affected in 8-cell-stage embryos exposed to HS. Thus, these results suggest the possibility that the early-stage embryos were stressed and damaged from heat shock because of their poor antioxidative potency. Table 1.Gene and protein expression of embryos This work was supported by KAKENHI [16780209, Grant-in-Aid for Young Scientists (B)].


2011 ◽  
Vol 108 (1) ◽  
pp. 113-129 ◽  
Author(s):  
Shelley J. Edmunds ◽  
Nicole C. Roy ◽  
Marcus Davy ◽  
Janine M. Cooney ◽  
Matthew P. G. Barnett ◽  
...  

Inflammatory bowel disease (IBD) is a collective term for conditions characterised by chronic inflammation of the gastrointestinal tract involving an inappropriate immune response to commensal micro-organisms in a genetically susceptible host. Previously, aqueous and ethyl acetate extracts of gold kiwifruit (Actinidia chinensis) or green kiwifruit (A. deliciosa) have demonstrated anti-inflammatory activity usingin vitromodels of IBD. The present study examined whether these kiwifruit extracts (KFE) had immune-modulating effectsin vivoagainst inflammatory processes that are known to be increased in patients with IBD. KFE were used as a dietary intervention in IL-10-gene-deficient (Il10− / −) mice (anin vivomodel of IBD) and the C57BL/6J background strain in a 3 × 2 factorial design. While allIl10− / −mice developed significant colonic inflammation compared with C57BL/6J mice, this was not affected by the inclusion of KFE in the diet. These findings are in direct contrast to our previous study where KFE reduced inflammatory signalling in primary cells isolated fromIl10− / −and C57BL/6J mice. Whole-genome gene and protein expression level profiling indicated that KFE influenced immune signalling pathways and metabolic processes within the colonic tissue; however, the effects were subtle. In particular, expression levels across gene sets related to adaptive immune pathways were significantly reduced using three of the four KFE in C57BL/6J mice. The present study highlights the importance of investigating food components identified by cell-based assays with appropriatein vivomodels before making dietary recommendations, as a food that looks promisingin vitromay not be effectivein vivo.


2012 ◽  
Vol 2012 ◽  
pp. 1-8
Author(s):  
Margaret R. Passmore ◽  
Maria Nataatmadja ◽  
John F. Fraser

The use of an appropriate control group in human research is essential in investigating the level of a pathological disorder. This study aimed to compare three alternative sources of control lung tissue and to determine their suitability for gene and protein expression studies. Gene and protein expression levels of the vascular endothelial growth factor (VEGF) and gelatinase families and their receptors were measured using real-time reverse transcription polymerase chain reaction (RT-PCR) and immunohistochemistry. The gene expression levels of VEGFA, placental growth factor (PGF), and their receptors, fms-related tyrosine kinase 1 (FLT1), and kinase insert domain receptor (KDR) as well as matrix metalloproteinase-2 (MMP-2) and the inhibitors, tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) and TIMP-2 were significantly higher in lung cancer resections. The gene expression level of MMP-9 was significantly lower in the corresponding samples. Altered protein expression was also detected, depending on the area assessed. The results of this study show that none of the three control groups studied are completely suitable for gene and protein studies associated with the VEGF and gelatinase families, highlighting the need for researchers to be selective in which controls they opt for.


Sign in / Sign up

Export Citation Format

Share Document