scholarly journals Electroacupuncture Stimulation Regulates Adipose Lipolysis via Catecholamine Signaling Mediated by NLRP3 Suppression in Obese Rats

2022 ◽  
Vol 12 ◽  
Author(s):  
Mengjiang Lu ◽  
Ziwei Yu ◽  
Qian Li ◽  
Meirong Gong ◽  
Li An ◽  
...  

Chronic low-grade inflammation of visceral adipose tissue can cause obesity-associated insulin resistance, leading to metabolic syndrome. However, anti-inflammatory drugs and those for obesity management can lead to serious side effects such as abnormal heart rate and blood pressure. Consequently, this study aimed to explore the therapeutic potential of electroacupuncture stimulation (ES) for obesity and associated chronic inflammation. Sprague-Dawley male rats were fed a high-fat diet (HFD) for ten weeks to build an obesity model, and half of the diet-induced obesity (DIO) rats were received ES. The levels of inflammatory factors were detected by ELISA and qPCR analysis. The nerve-associated macrophages were marked with immunofluorescence staining. The molecular mechanism of NLRP3 inflammasome in ES was determined by the NLRP3 inflammasome activation model. Compared to HDF rats, ES showed decreased body weight and chronic inflammatory damage. Specifically, this occurred via a decrease in monoamine oxidase-A (MAOA) expression, which suppressed noradrenaline degradation. MAOA is expressed in nerve-associated macrophages (NAMs), and ES attenuated NAMs by suppressing the NLRP3 inflammasome. The NLRP3 agonist blocked the noradrenaline degradation-reducing effect of ES, and an increase in lipolysis via the inhibition of the NLRP3 inflammasome attenuated NAMs. Thus, our findings suggest that ES induced lipolysis via activation of the NLRP3 inflammasome in nerve-associated macrophages (NAMs), independently of sympathetic nervous system activity.

2017 ◽  
Vol 2017 ◽  
pp. 1-19 ◽  
Author(s):  
Yansheng Wu ◽  
Fei He ◽  
Yingqiao Li ◽  
Huiling Wang ◽  
Liqiang Shi ◽  
...  

Objective. Uric acid (UA) activates the NLRP3-ASC-caspase-1 axis and triggers cascade inflammatory that leads to hyperuricemic nephropathy and hyperuricemia-induced renal tubular injury. The original study aims to verify the positive effects of the traditional Chinese medicinal formula Shizhifang (SZF) on ameliorating the hyperuricemia, tubular injury, and inflammasome infiltration in the kidneys of hyperuricemic lab rats. Method. Twenty-eight male Sprague-Dawley rats were divided into four groups: control group, oxonic acid potassium (OA) model group, OA + SZF group, and OA + Allopurinol group. We evaluated the mediating effects of SZF on renal mitochondrial reactive oxygen species (ROS) and oxidative stress (OS) products, protein expression of NLRP3-ASC-caspase-1 axis, and downstream inflammatory factors IL-1β and IL-18 after 7 weeks of animals feeding. Result. SZF alleviated OA-induced hyperuricemia and inhibited OS in hyperuricemic rats (P<0.05). SZF effectively suppressed the expression of gene and protein of the NLRP3-ASC-caspase-1 axis through accommodating the ROS-TXNIP pathway (P<0.05). Conclusion. Our data suggest that SZF alleviates renal tubular injury and inflammation infiltration by inhibiting NLRP3 inflammasome activation triggered by mitochondrial ROS in the kidneys of hyperuricemic lab rats.


2021 ◽  
Vol 12 ◽  
Author(s):  
Pengxiao Chen ◽  
Qi Bai ◽  
Yanting Wu ◽  
Qiongzhen Zeng ◽  
Xiaowei Song ◽  
...  

Artemisia argyi H. Lév. and Vaniot is a traditional medical herb that has been used for a long time in China and other Asian counties. Essential oil is the main active fraction of Artemisia argyi H. Lév. and Vaniot, and its anti-inflammatory potential has been observed in vitro and in vivo. Here, we found that the essential oil of Artemisia argyi H. Lév. and Vaniot (EOAA) inhibited monosodium urate (MSU)- and nigericin-induced NLRP3 inflammasome activation. EOAA suppressed caspase-1 and IL-1β processing and pyroptosis. NF-κB p65 phosphorylation and translocation were also inhibited. In addition, EOAA suppressed nigericin-induced NLRP3 inflammasome activation without blocking ASC oligomerization, suggesting that it may inhibit NLRP3 inflammasome activation by preventing caspase-1 processing. Our study thus indicates that EOAA inhibits NLRP3 inflammasome activation and has therapeutic potential against NLRP3-driven diseases.


2020 ◽  
Vol 21 (11) ◽  
pp. 4184 ◽  
Author(s):  
Kelvin Ka-Lok Wu ◽  
Samson Wing-Ming Cheung ◽  
Kenneth King-Yip Cheng

Adipose tissue is an active endocrine and immune organ that controls systemic immunometabolism via multiple pathways. Diverse immune cell populations reside in adipose tissue, and their composition and immune responses vary with nutritional and environmental conditions. Adipose tissue dysfunction, characterized by sterile low-grade chronic inflammation and excessive immune cell infiltration, is a hallmark of obesity, as well as an important link to cardiometabolic diseases. Amongst the pro-inflammatory factors secreted by the dysfunctional adipose tissue, interleukin (IL)-1β, induced by the NLR family pyrin domain-containing 3 (NLRP3) inflammasome, not only impairs peripheral insulin sensitivity, but it also interferes with the endocrine and immune functions of adipose tissue in a paracrine manner. Human studies indicated that NLRP3 activity in adipose tissues positively correlates with obesity and its metabolic complications, and treatment with the IL-1β antibody improves glycaemia control in type 2 diabetic patients. In mouse models, genetic or pharmacological inhibition of NLRP3 activation pathways or IL-1β prevents adipose tissue dysfunction, including inflammation, fibrosis, defective lipid handling and adipogenesis, which in turn alleviates obesity and its related metabolic disorders. In this review, we summarize both the negative and positive regulators of NLRP3 inflammasome activation, and its pathophysiological consequences on immunometabolism. We also discuss the potential therapeutic approaches to targeting adipose tissue inflammasome for the treatment of obesity and its related metabolic disorders.


2021 ◽  
Vol 22 (24) ◽  
pp. 13228
Author(s):  
Yi Sun ◽  
Shuzhe Ding

Diabetic cardiomyopathy (DCM), as a common complication of diabetes, is characterized by chronic low-grade inflammation. The NLRP3 inflammasome is a key sensor mediating innate immune and inflammatory responses. However, the mechanisms initiating and promoting NLRP3 inflammasome activation in DCM is largely unexplored. The aim of the present review is to describe the link between NLRP3 inflammasome and DCM, and to provide evidence highlighting the importance of exercise training in DCM intervention. Collectively, this evidence suggests that DCM is an inflammatory disease aggravated by NLRP3 inflammasome-mediated release of IL-1β and IL-18. In addition, chronic exercise intervention is an effective preventive and therapeutic method to alleviate DCM via modulating the NLRP3 inflammasome.


2021 ◽  
Author(s):  
Simantini Ghosh ◽  
Zaidan Mohammed ◽  
Itender Singh

AbstractStress related disorders lead to serious psychiatric disabilities and are comorbid with anxiety and depression. Current therapies targeting several neurotransmitter systems are only able to mitigate symptoms partially. It is well recognized that stress and trauma related disorders lead to a prominent inflammatory response in humans, and in several animal models a robust neuroinflammatory response has been observed. However, the therapeutic potential of targeting specific components of the inflammatory response has not been adequately studied in this context. The current study investigated the NLRP3 - Caspase1-IL-1β pathway, which recent research has identified as a major contributor to exacerbated inflammatory response in several peripheral and central nervous system pathological conditions. Using two different models of stress, first - single prolonged restraint stress followed by brief underwater submersion and second - predator odor exposure in mice, we demonstrate heightened anxious behavior in mice one-week after stress. Females in both models display an exacerbated anxiety response than males within the stressed group. Consistent with this data stressed animals demonstrate upregulation of IL-1β, IL-6, Caspase1 activity and NLRP3 inflammasome activation in brain, with female animals showing a stronger neuroinflammatory phenotype. Pharmacological inhibition of NLRP3 inflammasome activation led to a rescue in terms of anxious behavior as well as attenuated neuroinflammatory response, both of which were significantly more prominent in female animals. Further, we observed induction of activated Bruton’s Tyrosine Kinase (BTK), an upstream positive regulator of NLRP3 inflammasome activation, in hippocampus and amygdala of stressed mice. Next, we conducted proof-of-concept pharmacological BTK inhibitor studies with Ibrutinib, a drug that is already FDA approved for use in certain types of lymphomas and leukemias, as well as a second inhibitor of BTK, LFM-A13. In both sets of experiments, we found inhibition of BTK significantly reduced the anxious behavior in stressed mice and attenuated the induction of NLRP3 inflammasome, Caspase 1 and IL1β. Our results suggest that BTK inhibition can be further investigated in context of human stress and trauma related disorders as a therapeutic strategy.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Sai Ma ◽  
Jiangwei Chen ◽  
Jing Feng ◽  
Ran Zhang ◽  
Miaomiao Fan ◽  
...  

The NLRP3 (nucleotide-binding domain and leucine-rich repeat pyrin domain containing 3) inflammasome-mediated inflammatory responses are critically involved in the progression of atherosclerosis (AS), which is the essential cause for cardiovascular diseases. Melatonin has anti-inflammatory properties. However, little is known about the potential effects of melatonin in the pathological process of AS. Herein, we demonstrate that melatonin suppressed prolonged NLRP3 inflammasome activation in atherosclerotic lesions by reactive oxygen species (ROS) scavenging via mitophagy in macrophages. The atherosclerotic mouse model was induced with a high-fat diet using ApoE−/− mice. Melatonin treatment markedly attenuated AS plaque size and vulnerability. Furthermore, melatonin decreased NLRP3 inflammasome activation and the consequent IL-1β secretion within atherosclerotic lesions. Despite the unchanged protein expression, the silent information regulator 3 (Sirt3) activity was elevated in the atherosclerotic lesions in melatonin-treated mice. In ox-LDL-treated macrophages, melatonin attenuated the NLRP3 inflammasome activation and the inflammatory factors secretion, while this protective effect was abolished by either Sirt3 silence or autophagy inhibitor 3-MA. Mitochondrial ROS (mitoROS), which was a recognized inducer for NLRP3 inflammasome, was attenuated by melatonin through the induction of mitophagy. Both Sirt3-siRNA and autophagy inhibitor 3-MA partially abolished the beneficial effects of melatonin on mitoROS clearance and NLRP3 inflammasome activation, indicating the crucial role of Sirt3-mediated mitophagy. Furthermore, we demonstrated that melatonin protected against AS via the Sirt3/FOXO3a/Parkin signaling pathway. In conclusion, the current study demonstrated that melatonin prevented atherosclerotic progression, at least in part, via inducing mitophagy and attenuating NLRP3 inflammasome activation, which was mediated by the Sirt3/FOXO3a/Parkin signaling pathway. Collectively, our study provides insight into melatonin as a new target for therapeutic intervention for AS.


Cancers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 2297
Author(s):  
Sonia Missiroli ◽  
Mariasole Perrone ◽  
Caterina Boncompagni ◽  
Chiara Borghi ◽  
Alberto Campagnaro ◽  
...  

Inflammasomes are multiprotein complexes that regulate the maturation and secretion of the proinflammatory cytokines interleukin-1beta (IL-1βand interleukin-18 (IL-18) in response to various intracellular stimuli. As a member of the inflammasomes family, NLRP3 is the most studied and best characterized inflammasome and has been shown to be involved in several pathologies. Recent findings have made it increasingly apparent that the NLRP3 inflammasome may also play a central role in tumorigenesis, and it has attracted attention as a potential anticancer therapy target. In this review, we discuss the role of NLRP3 in the development and progression of cancer, offering a detailed summary of NLRP3 inflammasome activation (and inhibition) in the pathogenesis of various forms of cancer. Moreover, we focus on the therapeutic potential of targeting NLRP3 for cancer therapy, emphasizing how understanding NLRP3 inflammasome-dependent cancer mechanisms might guide the development of new drugs that target the inflammatory response of tumor-associated cells.


2021 ◽  
Vol 22 (12) ◽  
pp. 6471
Author(s):  
Ramona D’Amico ◽  
Roberta Fusco ◽  
Rosalba Siracusa ◽  
Daniela Impellizzeri ◽  
Alessio Filippo Peritore ◽  
...  

Fibromyalgia is a chronic condition characterized by persistent widespread pain that significantly reduces quality of life in patients. The purinergic P2X7 receptor (P2X7R) seems to be involved in different pain states and neuroinflammation. The purpose of this study is to investigate the positive effects of P2X7R inhibition by the antagonist Brilliant Blue G (BBG) in a rat model of reserpine-induced fibromyalgia. Sprague–Dawley male rats were injected with 1 mg/kg of reserpine for three consecutive days. Later, animals were administered BBG (50 mg/kg) intraperitoneally for seven days. Reserpine injections induced a significant increase in pain pro-inflammatory mediators as well as a significant increase in neuroinflammation. Chronic pain, in turn, led to depressive-like symptoms and reduced neurogenesis. Blockage of P2X7R by BBG administrations is able to attenuate the behavioral deficits, pain mediators and microglial activation induced by reserpine injection. Additionally, BBG prevents NLRP3 inflammasome activation and consequently the release of active interleukin (IL)-1 and IL-18, involved in the activation of nociceptors. In conclusion, these results suggest that inhibition of P2X7R should be further investigated to develop a potential approach for the management of fibromyalgia.


2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Shuang Li ◽  
Hao Wu ◽  
Dong Han ◽  
Sai Ma ◽  
Wensi Fan ◽  
...  

Sepsis, a systemic inflammatory response to infection, is the leading cause of death in the intensive care unit (ICU). Previous studies indicated that mesenchymal stromal cells (MSCs) might have therapeutic potential against sepsis. The current study was designed to investigate the effects of MSCs on sepsis and the underlying mechanisms focusing on inflammasome activation in macrophages. The results demonstrated that the bone marrow-derived mesenchymal stem cells (BMSCs) significantly increased the survival rate and organ function in cecal ligation and puncture (CLP) mice compared with the control-grouped mice. BMSCs significantly restricted NLRP3 inflammasome activation, suppressed the generation of mitochondrial ROS, and decreased caspase-1 and IL-1β activation when cocultured with bone marrow-derived macrophages (BMDMs), the effects of which could be abolished by Mito-TEMPO. Furthermore, the expression levels of caspase-1, IL-1β, and IL-18 in BMDMs were elevated after treatment with mitophagy inhibitor 3-MA. Thus, BMSCs exert beneficial effects on inhibiting NLRP3 inflammasome activation in macrophages primarily via both enhancing mitophagy and decreasing mitochondrial ROS. These findings suggest that restricting inflammasome activation in macrophages by increasing mitophagy and decreasing mitochondrial ROS might be a crucial mechanism for MSCs to combat sepsis.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Jian-Dong Ren ◽  
Jie Ma ◽  
Jun Hou ◽  
Wen-Jin Xiao ◽  
Wei-Hua Jin ◽  
...  

Increasing evidence has demonstrated that reactive oxygen species (ROS) induces oxidative stress and plays a crucial role in the pathogenesis of acute pancreatitis (AP). Hydrogen-rich saline (HRS), a well-known ROS scavenger, has been shown to possess therapeutic benefit on AP in many animal experiments. Recent findings have indicated that the NOD-like receptor family, pyrin domain-containing 3 (NLRP3) inflammasome, an intracellular multiprotein complex required for the maturation of interleukin- (IL-) 1β, may probably be a potential target of HRS in the treatment of AP. Therefore, in this study, we evaluated the activation of NLRP3 inflammasome and meanwhile assessed the degree of oxidative stress and inflammatory cascades, as well as the histological alterations in mice suffering from cerulein-induced AP after the treatment of HRS. The results showed that the activation of NLRP3 inflammasome in AP mice was substantially inhibited following the administration of HRS, which was paralleled with the decreased NF-κB activity and cytokines production, attenuated oxidative stress and the amelioration of pancreatic tissue damage. In conclusion, our study has, for the first time, revealed that inhibition of the activation of NLRP3 inflammasome probably contributed to the therapeutic potential of HRS in AP.


Sign in / Sign up

Export Citation Format

Share Document