scholarly journals Low-Cost Radiant Heater for Rapid Response, High-Temperature Heating

2021 ◽  
Vol 9 ◽  
Author(s):  
Xiang Gao ◽  
Matt von Boecklin ◽  
Ivan Ermanoski ◽  
Ellen B. Stechel

High-temperature processing has an irreplaceable role in many research and industrial applications. Despite remarkable development spanning over a century, the pursuit of even higher thermal flux density and more rapid thermal transients has not slowed down. As part of the ongoing energy evolution, many industrial applications are transitioning from direct combustion of fossil fuels as primary energy sources to increasing electrification, capable of adapting to renewable power grids. Thus, there is an emerging need for electrical heaters that can replace burners and supply the heat demand, especially at the highest temperatures. In this study, we report on a radiant heater design that can achieve cyclic heating/cooling rates of up to 400 K min–1 and a temperature range in excess of 1,800 K, comparable to those of commercial infrared gold image furnaces, at high surface and volumetric power densities. The heater consists of a modular unit of incandescent tungsten filament and is enclosed in an evacuated ceramic envelope, chemically inert, tolerant of thermal shock, and impervious to gasses. The material and manufacture cost of such heaters, which is estimated at ∼$0.05/W, is less than 0.03% of that for infrared gold image furnaces, which is at >$2/W. Tests of more than 10,000 demanding cycles (high temperature and high heating/cooling rate) over 350 h of total operational time and in different temperature ranges confirm the robust performance of radiant heater prototypes. The design is widely applicable to high-temperature reactor and furnace designs. In thermochemistry research and practice, these radiant heaters could offer multiple benefits compared to solar simulators, lasers, infrared gold furnaces, ceramic heaters, or direct concentration of solar input.

Proceedings ◽  
2020 ◽  
Vol 58 (1) ◽  
pp. 34
Author(s):  
Swapan Suman

To meet the global demand of energy requires an alternative source, preferably with a lower concern of climate change. Biochar production from agricultural biomass waste by pyrolysis creates a unique solution for producing a useful source of green energy. Biochar is a carbon-rich product with a high heating value which is comparable with our primary energy sources (fossil fuels). Biochar can be utilized for various purposes such as energy production and soil enhancement. Biochar can be more suitable for steelmaking, in view of their chemical and thermo-chemical characteristics including low ash, higher heating values (HHV), and high surface area. Biochar can also be utilised selectively for soil amelioration, C-sequestration, and waste water treatment, in view of the suitability of their characteristics (such as higher values of pH, mineral content, and surface area) for meeting the requirements for a particular purpose. This study associates the characteristics of biochar produced by slow pyrolysis at 800 °C for two biomass residues: corn cob and coconut shell. These results can be used to establish ideal utilization means of biomass for energy and/or biochar production.


2016 ◽  
Vol 11 (2) ◽  
pp. 592-598 ◽  
Author(s):  
Gurdeep Singh ◽  
Amarjeet Singh

Coal is the most abundant fuel resource in India. Coal is the major source of energy and is the principal contributor for the industrial growth of the developing nation like India. Coal is a bridge component in a current, balanced energy group. It is connection for the future as a vital low cost energy solution for achieving sustainability challenges for competing with the developed countries. The largest consumer of coal in India is power sector, and the industrial sector is coming next to power sector. The major consumption of coal in India is in steel plant, cement plant and brick-manufacturing units.52%of primary energy is coal dependent.1 About 66% of India's power generation is based upon coal production.1 While coal is considered the most significant element for the growth of country, it faces major and massive social and environmental issues. Environmental worries are the most important parameter for the coal industry’s future. In comparison to the other fossil fuels, coal is more pollution causing and less energy efficient. Coal has an important role in fulfillment of current needs. 212.10 Million Tonnes of coal was imported in the financial year 2014-15.2 The coal demand will be increasing due to increase in electricity demand of the country. Coal India being the largest producer of coal in India has to plan accordingly to fulfill the coal demand of country. A road map for enhancement of coal production up to 1 Billion of coal by 2019-2020 has been prepared by Coal India.3 Due to coal mining the key environmental impacts are on air, water, land, forest, biodiversity, and climate etc. The biggest challenge is to put on the innovative technologies in the most efficient and environmentally friendly manner and to solve social issues by taking care of the implementation of rehabilitation and resettlement (R&R). Thrust is now to promote inclusive growth of mining areas by adequate corporate social responsibilities (CSR) activities.4,5 Thus the target 1 Billion of coal production by 2019-2020 may be achieved by proper implementation environmentally benign coal mining for the fulfilment of the growing demand of electricity of India.


2021 ◽  
Vol 2048 (1) ◽  
pp. 012004
Author(s):  
B Chmielarz ◽  
A Bredimas ◽  
C Herpson

Abstract The paper analyses Polish industrial energy market requirements and the economic boundary conditions of for High Temperature Reactor (HTR)-based hybrid energy systems for electricity, heat, and hydrogen production. The Polish industry suffers from high imported gas prices and high dependence on domestic coal sector. Most industrial coal boilers are ageing and will need replacement within two decades. Increasing emission prices will soon cripple the profitability of coal in favour of natural gas and leave an opening for HTRs. HTRs can be competitive for both heat and electricity generation if used at load factors above 90% and constructed within budget and on time. The competitiveness of HTRs grows further with rising fossil fuels and CO2 emission prices. For industrial hydrogen, steam methane reforming (SMR) is competitive against any other alternative. Large-scale hydrogen production with HTR-based Sulphur Iodine cycle may compete with SMR if capital and operational costs can be decreased. High temperature steam electrolysis requires more durable materials and lower capital cost. Electrolysis, given its relatively low CAPEX and scalability, can be competitive when electricity is cheap as a result of over-production from intermittent power capacities. Other fossil-based hydrogen production methods appear more costly and CO2-intensive than SMR. The study was done as a part of the GEMINI+ project.


2020 ◽  
Vol 2 (5) ◽  
Author(s):  
M. Skovgaard ◽  
M. Gudik-Sørensen ◽  
K. Almdal ◽  
A. Ahniyaz

Abstract Nanoporous zirconia with high surface area and crystallinity has a wide range of industrial applications, such as in inorganic exchangers for ion exchange columns, catalyst substrates, and packing material for HPLC. Spherical particles of crystalline nanoporous zirconia are highly desired in various industries due to easy handling of the materials in a fluidized bed. Here, spray drying was adopted to produce spherical nanoporous zirconia powders in both laboratory scale and pilot plant scale. Effect of salts on spray-dried ZrO2 powders and their crystallization behavior was studied. It was found that addition of salts to the zirconia precursors has a huge effect on the crystallization of nanoporous zirconia powders. These results have a great impact on the development of microspheres of nanocrystalline ZrO2 and potentially open up a new opportunity to the low-cost production of porous ceramic microspheres with the salt templating method, in general.


Author(s):  
G.A. Botton ◽  
C.J. Humphreys

Transition metal aluminides are of great potential interest for high temperature structural applications. Although these materials exhibit good mechanical properties at high temperature, their use in industrial applications is often limited by their intrinsic room temperature brittleness. Whilst this particular yield behaviour is directly related to the defect structure, the properties of the defects (in particular the mobility of dislocations and the slip system on which these dislocations move) are ultimately determined by the electronic structure and bonding in these materials. The lack of ductility has been attributed, at least in part, to the mixed bonding character (metallic and covalent) as inferred from ab-initio calculations. In this work, we analyse energy loss spectra and discuss the features of the near edge structure in terms of the relevant electronic states in order to compare the predictions on bonding directly with spectroscopic experiments. In this process, we compare spectra of late transition metal (TM) to early TM aluminides (FeAl and TiAl) to assess whether differences in bonding can also be detected. This information is then discussed in terms of bonding changes at grain boundaries in NiAl.


Alloy Digest ◽  
1974 ◽  
Vol 23 (2) ◽  

Abstract ALUMINUM 1100 is commercially pure aluminum and is characterized by its excellent ability to be drawn, spun, stamped or forged. It has good weldability, excellent resistance to corrosion and many home, architectural and industrial applications. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and shear strength as well as fatigue. It also includes information on low and high temperature performance, and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Al-44. Producer or source: Various aluminum companies. Originally published October 1956, revised February 1974.


Alloy Digest ◽  
1970 ◽  
Vol 19 (11) ◽  

Abstract PLATINUM is a soft, ductile, white metal which can be readily worked either hot or cold. It has a wide range of industrial applications because of its excellent corrosion and oxidation resistance and its high melting point. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Pt-1. Producer or source: Matthey Bishop Inc..


Alloy Digest ◽  
2007 ◽  
Vol 56 (10) ◽  

Abstract Kubota alloys HK40 and HK50 are austenitic Fe-Cr-Ni alloys that have been standard heat-resistant materials for more than four decades. With moderately high temperature strength, oxidation resistance, and carburization resistance the alloys are used in a wide variety of industrial applications. HK 50 has slightly higher carbon content. This datasheet provides information on composition, physical properties, and tensile properties as well as creep. It also includes information on casting, heat treating, machining, and joining. Filing Code: SS-998. Producer or source: Kubota Metal Corporation, Fahramet Division.


2021 ◽  
Author(s):  
Nicole Ziegenbalg ◽  
Ruth Lohwasser ◽  
Giovanni D’Andola ◽  
Torben Adermann ◽  
Johannes Christopher Brendel

Polyethersulfones are an interesting class of polymers for industrial applications due to their unusual properties such as a high refractive index, flame-retardant properties, high temperature and chemical resistance. The common...


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1301
Author(s):  
Federico Cavedo ◽  
Parisa Esmaili ◽  
Michele Norgia

A low-cost optical reflectivity sensor is proposed in this paper, able to detect the presence of objects or surface optical properties variations, at a distance of up to 20 m. A collimated laser beam is pulsed at 10 kHz, and a synchronous digital detector coherently measures the back-diffused light collected through a 1-inch biconvex lens. The sensor is a cost-effective solution for punctual measurement of the surface reflection at different distances. To enhance the interference immunity, an algorithm based on a double-side digital baseline restorer is proposed and implemented to accurately detect the amplitude of the reflected light. As results show, the sensor is robust against ambient light and shows a strong sensitivity on a wide reflection range. The capability of the proposed sensor was evaluated experimentally for object detection and recognition, in addition to dedicated measurement systems, like remote encoders or keyphasors, realized far from the object to be measured.


Sign in / Sign up

Export Citation Format

Share Document