scholarly journals Preparation of Adsorbents by Pyrolysis of Sludge Mixed With Steel Slag and Study on Adsorption of Chromium Ions in Water

2022 ◽  
Vol 9 ◽  
Author(s):  
Xiaowen Qi ◽  
Enze Zhou ◽  
Xuefei Wu ◽  
Siyi Luo ◽  
Yanggang Song

In this study, the dewatered sludge from the sewage plant and the open-hearth steel slag of the steel plant are used as raw materials. As two wastes, they were mixed and pyrolyzed to prepare a composite absorbent. Further, the adsorption mechanism of the adsorbent to chromium ions in the sewage is explored. The pyrolysis reaction behavior of sludge mixed with steel slag was studied by the thermogravimetric analysis technology. SEM, BET, and XPS were used to analyze the specific surface area, pore size distribution, and pore structure characteristics of pyrolysis products, respectively. Moreover, a comprehensive analysis of the adsorbent was carried out for the adsorption mechanism of hexavalent chromium ions. The results show that the addition of steel slag promotes the pyrolysis of the sludge in each stage. When the content of steel slag is 80%, the increases of reaction rate are the most obvious with the largest increase of weight loss rate in each stage. The SEM results show that the enrichment of sludge on metal oxides is enhanced in the high-temperature range (600–700°C). Besides, when the content of steel slag is 40–60%, the mixture’s growth rate of the specific surface area can reach 600% and the growth rate of total pore volume can reach 350% (the situations of sludge as the baseline). Regarding the measurement of Cr(VI), the adsorption rate of the steel-slag solution is 50.93% and that of the sludge solution is 69%. However, the adsorption rate can be increased to 95% when the steel slag and sludge were mixed as an adsorption solution. In conclusion, the adsorption mechanism of Cr(VI) by additives is controlled by both physical and chemical processes. The present study provides a theoretical basis and technical support for the scientific and reasonable utilization of sludge and steel slag.

Minerals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 298
Author(s):  
Chenlong Ding ◽  
Jinxian He ◽  
Hongchen Wu ◽  
Xiaoli Zhang

Ordos Basin is an important continental shale gas exploration site in China. The micropore structure of the shale reservoir is of great importance for shale gas evaluation. The Taiyuan Formation of the lower Permian is the main exploration interval for this area. To examine the nanometer pore structures in the Taiyuan Formation shale reservoirs in the Lin-Xing area, Northern Shaanxi, the microscopic pore structure characteristics were analyzed via nitrogen adsorption experiments. The pore structure parameters, such as specific surface area, pore volume, and aperture distribution, of shale were calculated; the significance of the pore structure for shale gas storage was analyzed; and the main controlling factors of pore development were assessed. The results indicated the surface area and hole volume of the shale sample to be 0.141–2.188 m2/g and 0.001398–0.008718 cm3/g, respectively. According to the IUPAC (International Union of Pure and Applied Chemistry) classification, mesopores and macropores were dominant in the pore structure, with the presence of a certain number of micropores. The adsorption curves were similar to the standard IV (a)-type isotherm line, and the hysteresis loop type was mainly similar to H3 and H4 types, indicating that most pores are dominated by open type pores, such as parallel plate-shaped pores and wedge-shaped slit pores. The micropores and mesopores provide the vast majority of the specific surface area, functioning as the main area for the adsorption of gas in the shale. The mesopores and macropores provide the vast majority of the pore volume, functioning as the main storage areas for the gas in the shale. Total organic carbon had no notable linear correlation with the total pore volume and the specific surface area. Vitrinite reflectance (Ro) had no notable correlation with the specific surface area, but did have a low “U” curve correlation with the total pore volume. There was no relationship between the quartz content and specific surface area and total pore volume. In addition, there was no notable correlation between the clay mineral content and total specific surface area and total pore volume.


Paliva ◽  
2020 ◽  
pp. 155-161
Author(s):  
Tomáš Hlinčík ◽  
Veronika Šnajdrová ◽  
Veronika Kyselová

Alumina is commonly used in industrial practice as a catalyst support and it is made from boehmite. Depending on the calcination temperature, this mineral is transformed into various crystalline modifications which have different physical and chemical properties. For this reason, the following parameters were determined at different calcination temperatures: length, width, material hardness, specific surface area and total pore volume. The results show that with increasing calcination temperature there have been significant changes which may be important when using the material as a catalyst support, e.g. in the preparation of catalysts or in the design of cat-alytic reactors. The specific surface area, which decreases in the temperature range 450–800 °C, is an important parameter for the preparation of catalysts, so it is appropriate to choose a temperature of 600 °C, when the specific surface area is above 200 m2·g-1. The effect of calcination temperature on the structural transitions of boehmite was also monitored. The results showed that γ-Al2O3 has the most suitable properties as a catalyst sup-port in the temperature range 450–800 °C.


2018 ◽  
Vol 37 (1) ◽  
pp. 251-272 ◽  
Author(s):  
Junjian Zhang ◽  
Chongtao Wei ◽  
Gaoyuan Yan ◽  
Guanwen Lu

To better understand the structural characteristic of adsorption pores (pore diameter < 100 nm) of coal reservoirs around the coalbed methane production areas of western Yunnan and eastern Guizhou, we analyzed the structural and fractal characteristics of pore size range of 0.40–2.0 nm and 2–100 nm in middle–high rank coals ( Ro,max = 0.93–3.20%) by combining low-temperature N2/CO2 adsorption tests and surface/volume fractal theory. The results show that the coal reservoirs can be divided into three categories: type A ( Ro,max < 2.15%), type B (2.15% <  Ro,max <2.50%), and type C ( Ro,max > 2.15%). The structural parameters of pores in the range from 2 to 100 nm are influenced by the degree of coal metamorphism and the compositional parameters (e.g., ash and volatile matter). The dominant diameters of the specific surface areas are 10–50 nm, 2–50 nm, and 2–10 nm, respectively. The pores in the range from <2 nm provide the largest proportion of total specific surface area (97.22%–99.96%) of the coal reservoir, and the CO2-specific surface area and CO2-total pore volume relationships show a positive linear correlation. The metamorphic degree has a much greater control on the pores (pore diameter less than 2 nm) structural parameters than those of the pore diameter ranges from 2 to 100 nm. Dv1 and Dv2 can characterize the structure of 2–100 nm adsorption pores, and Dv1 (volume heterogeneity) has a positive correlation with the pore structural parameters such as N2-specific surface area and N2-total pore volume. This parameter can be used to characterize volume heterogeneity of 2–10 nm pores. Dv2 (surface heterogeneity) showed type A > type B > type C and was mainly affected by the metamorphism degree. Ds2 can be used to characterize the pore surface heterogeneity of micropores in the range of 0.62–1.50 nm. This parameter has a good correlation with the pore parameters (CO2-total pore volume, CO2-specific surface area, and average pore size) and is expressed as type C < type B < type A. In conclusion, the heterogeneity of the micropores is less than that of the meso- and macropores (2–100 nm). Dv1, Dv2, and Ds2 can be used as effective parameters to characterize the pore structure of adsorption pores. This result can provide a theoretical basis for studying the pore structure compatibility of coal reservoirs in the region.


Materials ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 2424 ◽  
Author(s):  
Bao-guo Fan ◽  
Li Jia ◽  
Yan-lin Wang ◽  
Rui Zhao ◽  
Xue-song Mei ◽  
...  

In order to obtain the adsorption mechanism and failure characteristics of CO2 adsorption by potassium-based adsorbents with different supports, five types of supports (circulating fluidized bed boiler fly ash, pulverized coal boiler fly ash, activated carbon, molecular sieve, and alumina) and three kinds of adsorbents under the modified conditions of K2CO3 theoretical loading (10%, 30%, and 50%) were studied. The effect of the reaction temperature (50 °C, 60 °C, 70 °C, 80 °C, and 90 °C) and CO2 concentration (5%, 7.5%, 10%, 12.5%, and 15%) on the adsorption of CO2 by the adsorbent after loading and the effect of flue gas composition on the failure characteristics of adsorbents were obtained. At the same time, the microscopic characteristics of the adsorbents before and after loading and the reaction were studied by using a specific surface area and porosity analyzer as well as a scanning electron microscope and X-ray diffractometer. Combining its reaction and adsorption kinetics process, the mechanism of influence was explored. The results show that the optimal theoretical loading of the five adsorbents is 30% and the reaction temperature of 70 °C and the concentration of 12.5% CO2 are the best reaction conditions. The actual loading and CO2 adsorption performance of the K2CO3/AC adsorbent are the best while the K2CO3/Al2O3 adsorbent is the worst. During the carbonation reaction of the adsorbent, the cumulative pore volume plays a more important role in the adsorption process than the specific surface area. As the reaction temperature increases, the internal diffusion resistance increases remarkably. K2CO3/AC has the lowest activation energy and the carbonation reaction is the easiest to carry out. SO2 and HCl react with K2CO3 to produce new substances, which leads to the gradual failure of the adsorbents and K2CO3/AC has the best cycle failure performance.


Nanomaterials ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 896 ◽  
Author(s):  
Hye-Min Lee ◽  
Kwan-Woo Kim ◽  
Young-Kwon Park ◽  
Kay-Hyeok An ◽  
Soo-Jin Park ◽  
...  

In this study, low-density polyethylene (LDPE)-derived activated carbons (PE-AC) were prepared as electrode materials for an electric double-layer capacitor (EDLC) by techniques of cross-linking, carbonization, and subsequent activation under various conditions. The surface morphologies and structural characteristics of the PE-AC were observed by field-emission scanning electron microscope, Cs-corrected field-emission transmission electron microscope, and X-ray diffraction analysis, respectively. The nitrogen adsorption isotherm-desorption characteristics were confirmed by Brunauer–Emmett–Teller, nonlocal density functional theory, and Barrett–Joyner–Halenda equations at 77 K. The results showed that the specific surface area and total pore volume of the activated samples increased with increasing the activation time. The specific surface area, the total pore volume, and mesopore volume of the PE-AC were found to be increased finally to 1600 m2/g, 0.86 cm3/g, and 0.3 cm3/g, respectively. The PE-AC also exhibited a high mesopore volume ratio of 35%. This mesopore-rich characteristic of the activated carbon from the LDPE is considered to be originated from the cross-linking density and crystallinity of precursor polymer. The high specific surface area and mesopore volume of the PE-AC led to their excellent performance as EDLC electrodes, including a specific capacitance of 112 F/g.


2011 ◽  
Vol 239-242 ◽  
pp. 2274-2279 ◽  
Author(s):  
Ying Chun Wang ◽  
Wen Hai Huang ◽  
Ai Hua Yao ◽  
De Ping Wang

A simple method to prepare hollow hydroxyapatite (HAP) microspheres with mespores on the surfaces is performed using a precipitation method assisted with Li2O-CaO-B2O3(LCB) glass fabrication process. This research is concerned with the effect of sintering temperature on the microstructure evolution, phase purity, surface morphology, specific surface area, and porosity after sintering process. The microspheres were sintered in air atmosphere at temperatures ranging from 500 to 900 °C. The starting hollow HAP microspheres and the sintered specimens were characterized by scanning electron microscope, X-ray diffractometer, specific surface area analyzer, and Hg porosimetry, respectively. The as-prepared microspheres consisted of calcium deficient hydroxyapatite. The results showed that the as-prepared hollow HAP microspheres had the highest specific surface areas, and the biggest total pore volume. The pore size distribution of the as-prepared hollow HAP microspheres were mainly the mesopores in the range of 2~40 nm. The specific surface area and total pore volume of hollow HAP microspheres decreased with increasing sintering temperature. Whereas the mean pore size increased with increasing sintering temperature. It showed that at 700°C, Ca-dHAP decomposes into a biphasic mixture of HAP and β-calcium phosphate(TCP).


2011 ◽  
Vol 194-196 ◽  
pp. 2472-2479 ◽  
Author(s):  
Bao Lin Xing ◽  
Chuan Xiang Zhang ◽  
Lun Jian Chen ◽  
Guang Xu Huang

Activated carbons (ACs) were prepared from lignite by microwave (MW) and electrical furnace (EF) heating with KOH as activation agent. In order to compare pore structures and electrochemical performances of ACs prepared by both heating methods, the ACs were characterized by N2 adsorption at 77K, X-ray diffraction (XRD) and scanning electron microscope (SEM). The electrochemical performances of Electrochemical capacitors (ECs) with ACs as electrodes in 3mol/L KOH electrolyte were evaluated by constant current charge-discharge, cyclic voltammetry and electrochemical impedance spectroscopy. The results show that the pore structures of ACs prepared by MW and EF heating significantly enhance when the weight ratio of KOH to coal increases from 2 to 4. The BET specific surface area, total pore volume, the ratio of mesopore and average pore diameter of ACs prepared by MW heating (denoted as AC-MW4) reaches 2094m2/g, 1.193cm3/g, 53.6%, 2.28nm when the weight ratio of KOH to coal is 4, and ACs prepared by EF heating (denoted as AC-EF4) reaches 2580m2/g, 1.683cm3/g, 67.3%, 2.61nm. The ECs with AC-MW4 and AC-EF4 as electrodes present a high specific capacitance of 348F/g and 377F/g at a current density of 50mA/g, and still remain 325F/g and 350F/g after 500 cycles, respectively. Although the specific surface area, total pore volume and specific capacitance of ACs prepared by MW heating are slightly lower than EF heating, taking into account the heating time in the activation process, ACs prepared by EF heating needs approximate 140min, while MW heating only needs 10min, which have demonstrated that microwave heating technology is a promising and efficient technique to prepare ACs.


2010 ◽  
Vol 7 (2) ◽  
pp. 121-127
Author(s):  
Silvester Tursiloadi ◽  
Dinie Mansur ◽  
Yeny Meliana ◽  
Ruslan Efendi

Stable anatase is attractive because of its notable functions for photocatalysis and photon-electron transfer.  TiO2-nanoparticles dispersed SiO2 wet gels were prepared by hydrolysis of Ti(OC4H9n)4 and Si(OC2H5)4 in a 2-propanol solution with acid catalyst.  The solvent in the wet gels was supercritically extracted using CO2 at 60 oC and 22 Mpa in one-step.  Thermal evolution of the microstructure of the extracted gels (aerogels) was evaluated by XRD measurements, TEM and N2 adsorption measurements. The as-extracted aerogel with a large specific surface area, more than 365 m2g-1, contained anatase nanoparticles, about 5 nm in diameter.  The anatase phase was stable after calcinations at temperatures up to 1000 oC, and BET specific surface area, total pore volume and average pore diameter did not change significantly after calcinations at temperature up to 800 oC.   Keywords: Stable anatase, sol-gel, CO2 supercritical extraction.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Jin-Young Jung ◽  
Hye-Ryeon Yu ◽  
Se Jin In ◽  
Young Chul Choi ◽  
Young-Seak Lee

The surfaces of carbon molecular sieves (CMSs) were thermally fluorinated to adsorb water vapor. The fluorination of the CMSs was performed at various temperatures (100, 200, 300, and 400°C) to investigate the effects of the fluorine gas (F2) content on the surface properties. Fluorine-related functional groups formed were effectively generated on the surface of the CMSs via thermal fluorination process, and the total pore volume and specific surface area of the pores in the CMSs increased during the thermal fluorination process, especially those with diameters ≤ 8 Å. The water vapor adsorption capacity of the thermally fluorinated CMSs increased compared with the as-received CMSs, which is attributable to the increased specific surface area and to the semicovalent bonds of the C–F groups.


2017 ◽  
Vol 36 (1-2) ◽  
pp. 805-829 ◽  
Author(s):  
Er-Tao Chen ◽  
Liang Wang ◽  
Yuan-Ping Cheng ◽  
Hai-Jun Guo ◽  
Cong-Meng Hao ◽  
...  

The gas desorption index of drill cuttings is a basic index that measures the initial desorption capacities of coal seams and predicts coal seam gas outbursts. Following a long period of gas drainage in the No.7 coal seam of the No.86 mining area in the Haizi coal mine, the gas desorption index of drill cuttings was still found to be much higher than the threshold value for outburst risks. This abnormal phenomenon led to the present study of the rational selection of test methods and objects in this context. In this study, particle size distribution, pore structure and gas desorption characteristics of coal samples in anomalous areas were analyzed. We found that desorption characteristics are related to particle size and particle size varies in relation to tectonic stress and magmatic intrusions. It appears that the anomalous readings are related to particle size of the coal, resulting from tectonic/magmatic pulverization. Furthermore, measured particle size of drill cuttings is not actually reflective of coal particle size – larger particles may be comprised of multiple smaller particles. The results show that coal samples with particle size <1 mm accounts for 76.3% of total samples and coal samples with particle size >1 mm only accounts for 23.7% of total samples. The porosity and total pore volume increase as the particle size decreases. The specific surface area increases with decreasing pore diameter. Transitional pores and micropores increase the specific surface area of the coal sample considerably. The desorption capacity increases with decreasing particle size. The additional tectonic stress caused by magmatic intrusion has a crushing effect, and 1–3 mm particles used in test were composed of a large amount of smaller particles, eventually resulting in abnormal gas desorption index phenomena. Therefore, we proposed an improved method for measuring the gas desorption index of pulverized coal.


Sign in / Sign up

Export Citation Format

Share Document