scholarly journals Study on the Potential Distribution of Leptinotarsa decemlineata and Its Natural Enemy Picromerus bidens Under Climate Change

2022 ◽  
Vol 9 ◽  
Author(s):  
Xinyue Gao ◽  
Qing Zhao ◽  
Jiufeng Wei ◽  
Hufang Zhang

The Colorado potato beetle (CPB), scientifically known as Leptinotarsa decemlineata, is a destructive quarantine pest that has invaded more than 40 countries and regions worldwide. It causes a 20–100% reduction in plant production, leading to severe economic losses. Picromerus bidens L. is a predatory insect that preys on CPB. This study used the MaxEnt model to predict the current and future potential distribution areas of CPB and P. bidens under different climatic scenarios to determine the possibility of using P. bidens as a natural enemy to control CPB. The possible introduction routes of CPB and P. bidens were subsequently predicted by combining their potential distribution with the current distribution of airports and ports. Notably, the potential distribution area of P. bidens was similar to that of CPB, suggesting that P. bidens could be used as a natural enemy to control CPB. Future changes in the suitable growth areas of CPB under different climate scenarios increased and decreased but were insignificant, while those of P. bidens decreased. Consequently, a reduction of the suitable habitats of P. bidens may cause a decrease in its population density, leading to a lack of adequate and timely prevention and control of invasive pests. Active measures should thus be enacted to minimize global warming and protect biodiversity. This study provides a theoretical basis and data support for early warning, monitoring, and control of the CPB spread.

2021 ◽  
Author(s):  
Chao Li ◽  
Jianghua Liao ◽  
Yuke Ya ◽  
Juan Liu ◽  
Jun Li ◽  
...  

Abstract Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae), a newly invaded pest that breaks out fast and severely, causes a serious threat to the national security of food production. In this study, the MaxEnt model was used to predict the potentially suitable distribution area of S. frugiperda in Northwest China. The potential distribution of S. frugiperda was predicted using meteorological factors from the correlation analysis. According to the result, a satisfactory AUC value in the MaxEnt model indicates that the prediction model has good accuracy, which is sufficient for predicting the fitness zone of S. frugiperda in Northwest China. The prediction results show that the potential distribution risk of S. frugiperda is high in western Gansu, eastern Qinghai, Shaanxi, most regions of Ningxia, and part regions of Tibetan, and it also exists in Hami, Yili, Bozhou, Urumqi, Hotan, and Aksu in Xinjiang, and more than 60% of Northwest China are suitable distribution areas for S. frugiperda. As China's major wheat and maize production area, Northwest China is a crucial prevention area for S. frugiperda. Clarifying the potential geographical distribution of S. frugiperda in Northwest China is essential for early warning as well as prevention and control.


2021 ◽  
Vol 2021 (2) ◽  
pp. 57-80
Author(s):  
Vladimir Zolotarev

The area of natural growth and the scale of economic use of white clover among perennial legumes are spatially one of the most global. Due to the constant presence of wild white clover in many natural phyto-cenoses of most agricultural landscapes of different geographical zones, a certain complex of phytophages has evolved from various classes of invertebrate animal organisms that feed on various parts of this plant and reproduce on it. With the introduction of white clover into the culture and the spread of production crops of this plant over large areas, more favorable conditions are created for uncontrolled mass re-production of pests, which can cause already economically and economically significant crop losses. White clover is affected by multi-eating and specialized pests, the damage from which is determined by their biological characteristics and climatic conditions. The high population of white clover crops with a complex of herbivorous invertebrates implies constant monitoring and control of the species composition of the harmful fauna of white clover crops in order to organize, if necessary, protective measures against them. This issue is especially relevant for seed crops. The main pests of seed stands are considered to be weevils of the genera Apion Herbs., Phytonomus Herbs., Sitona Germar., Hypera Germar., which can re-duce seed yield by 50% or more. To reduce the economic losses of the crop on white clover, an integrated protection system should be implemented using chemical, biological and agrotechnical pest control meas-ures based on taking into account their economic harmfulness thresholds. One of the important directions of increasing the efficiency of the production use of white clover is the development of varieties of this crop that are resistant to damage by pathogenic organisms and pests.


2016 ◽  
Vol 14 (3) ◽  
pp. 433-442 ◽  
Author(s):  
Jani Tomperi ◽  
Esko Juuso ◽  
Kauko Leiviskä

Monitoring and control of water treatment plants play an essential role in ensuring high quality drinking water and avoiding health-related problems or economic losses. The most common quality variables, which can be used also for assessing the efficiency of the water treatment process, are turbidity and residual levels of coagulation and disinfection chemicals. In the present study, the trend indices are developed from scaled measurements to detect warning signs of changes in the quality variables of drinking water and some operating condition variables that strongly affect water quality. The scaling is based on monotonically increasing nonlinear functions, which are generated with generalized norms and moments. Triangular episodes are classified with the trend index and its derivative. Deviation indices are used to assess the severity of situations. The study shows the potential of the described trend analysis as a predictive monitoring tool, as it provides an advantage over the traditional manual inspection of variables by detecting changes in water quality and giving early warnings.


Insects ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 92
Author(s):  
Hua Zhang ◽  
Jinyue Song ◽  
Haoxiang Zhao ◽  
Ming Li ◽  
Wuhong Han

Leptocybe invasa is a globally invasive pest of eucalyptus plantations, and is steadily spread throughout China. Predicting the growth area of L. invasa in China is beneficial to the establishment of early monitoring, forecasting, and prevention of this pest. Based on 194 valid data points and 21 environmental factors of L. invasa in China, this study simulated the potential distribution area of L. invasa in China under three current and future climate scenarios (SSPs1–2.5, SSPs2–3.5, and SSPs5–8.5) via the MaxEnt model. The study used the species distribution model (SDM) toolbox in ArcGIS software to analyze the potential distribution range and change of L. invasa. The importance of crucial climate factors was evaluated by total contribution rate, knife-cut method, and environmental variable response curve, and the area under the receiver operating characteristic (ROC) curve was used to test and evaluate the accuracy of the model. The results showed that the simulation effect of the MaxEnt model is excellent (area under the ROC curve (AUC) = 0.982). The prediction showed that L. invasa is mainly distributed in Guangxi, Guangdong, Hainan, and surrounding provinces, which is consistent with the current actual distribution range. The distribution area of the potential high fitness zone of L. invasa in the next three scenarios increases by between 37.37% and 95.20% compared with the current distribution. Climate change affects the distribution of L. invasa, with the annual average temperature, the lowest temperature of the coldest month, the average temperature of the driest season, the average temperature of the coldest month, and the precipitation in the wettest season the most important. In the future, the core areas of the potential distribution of L. invasa in China will be located in Yunnan, Guangxi, Guangdong, and Hainan. They tend to spread to high latitudes (Hubei, Anhui, Zhejiang, Jiangsu, and other regions).


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yang Zhang ◽  
Jieshi Tang ◽  
Gang Ren ◽  
Kaixin Zhao ◽  
Xianfang Wang

AbstractAlien invasive plants pose a threat to global biodiversity and the cost of control continues to rise. Early detection and prediction of potential risk areas are essential to minimize ecological and socio-economic costs. In this study, the Maxent model was used to predict current and future climatic conditions to estimate the potential global distribution of the invasive plant Xanthium italicum. The model consists of 366 occurrence records (10 repeats, 75% for calibration and 25% for verification) and 10 climate prediction variables. According to the model forecast, the distribution of X. italicum was expected to shrink in future climate scenarios with human intervention, which may be mainly caused by the rise in global average annual temperature. The ROC curve showed that the AUC values of the training set and the test set are 0.965 and 0.906, respectively, indicating that the prediction result of this model was excellent. The contribution rates of annual mean temperature, monthly mean diurnal temperature range, standard deviation of temperature seasonal change and annual average precipitation to the geographical distribution of X. italicum were 65.3%, 11.2%, 9.0%, and 7.7%, respectively, and the total contribution rate was 93.2%. These four variables are the dominant environmental factors affecting the potential distribution of X. italicum, and the influence of temperature is greater than that of precipitation. Through our study on the potential distribution prediction of X. italicum under the future climatic conditions, it has contribution for all countries to strengthen its monitoring, prevention and control, including early warning.


2013 ◽  
Vol 846-847 ◽  
pp. 400-404
Author(s):  
Ya Jing Zhu ◽  
Hui Yu Tian ◽  
Ke Bi

In most of Chinas rural areas, the devices of power distribution area are low configured, simply designed and installed, and have few functions but lots of forms. Beyond, most of them only implement simple functions of power distribution and metering. They couldnt meet the needs of transformation of rural power grid. So its extremely urgent to reconstruct and build intelligent rural power distribution and realize the standardization of information model and the intelligent integrated management of power distribution area to improve the quality and reliability of power supply. In this paper, we analyzed the current development situation of Chinas rural area. Then from the aspect of solving the lagging intelligent level of rural power system, we do some research about developing a new intelligent integrated distribution box and distribution transformer terminal , then we propose the intelligent manage system of power distribution area to realize high intelligent level of power distribution management, high level monitoring and control and greatly improved manage efficiency. At the same time, we enhanced the serving strength for the customer and help to improved the entire intelligent power load , so we could supply high quality power to our customers.


Author(s):  
Marco David Revelo ◽  
Victor Javier Montenegro

Ecuador subsidizes fuels, the problem with this benefit is that, many citizens are dedicated to illegally market these resources in border cities, among these fuels there are the cylinders of liquefied petroleum gas; the existing fragile control greatly benefits smuggling, representing a loss of resources for Ecuador.   There is no subsidy in neighboring countries such as Peru and Colombia, and unfortunately some citizens have chosen to engage in illegal fuel marketing, generating economic losses for the country. The actual cost of a 15 kilo gas cylinder is 12.00 dollars, however, it is sold at 1.60 dollar. It means that the government subsidizes 89% of the price of gas, with barely 11% being paid by consumers. (Diario el Comercio, 2013)   People who take advantage of the poor control of illegal marketing, reduce the number of cylinders in border areas of Ecuador and therefore increase the price, this situation has generated inconveniences for Ecuadorian citizens when they can not acquire gas cylinders. Currently, given the advance of technology in particular of microelectronics, it is very common to use portable electronic devices such as RFID (Radio Frequency Identifier) tags, for this project the active labels of 2.4 GHz allow the unique identification of each gas cylinder, as well as the portability of the information and the relation of belonging between gas cylinders and citizens, facilitating their monitoring and control.


2021 ◽  
Vol 43 ◽  
pp. 147-166
Author(s):  
Rubén Ramírez-Rodríguez ◽  
Manuel Melendo-Luque ◽  
Juan Diego Rus-Moreno ◽  
Francisco Amich

A particular threat posed by climate change for biodiversity conservation, one which has scarcely been studied, is the overlap of the potential distribution areas in phylogenetically closely related species. In this study, Species Distribution Modelling (SDM) was used to investigate the potential changes in the distribution of Delphinium bolosii and D. fissum subsp. sordidum under future climatic scenarios. These two closely related and endangered endemic species from the Iberian Peninsula do not have complete reproductive barriers between them. The two models selected different predictors with a similar effect in the biological cycle. Both taxa need low winter temperatures to break seed dormancy and sufficient rainfall to complete the flowering and fruiting stages. The current potential distribution areas of both taxa do not currently overlap. However, the results showed that potential changes may take place in the species’ distribution range under future climate scenarios. The models predict a reduction of the potential distribution area of D. bolosii while, conversely, the potential distribution area of D. fissum subsp. sordidum increased. In both cases, the predicted contraction in range is very high, and loss of habitat suitability in some current localities is worrying. Notwithstanding, the models do not predict overlaps of potential areas under climate change scenarios. Our findings can be used to define areas and populations of high priority for conservation or to take action against the impacts of climate change on these endangered species.


Author(s):  
David C. Joy

Personal computers (PCs) are a powerful resource in the EM Laboratory, both as a means of automating the monitoring and control of microscopes, and as a tool for quantifying the interpretation of data. Not only is a PC more versatile than a piece of dedicated data logging equipment, but it is also substantially cheaper. In this tutorial the practical principles of using a PC for these types of activities will be discussed.The PC can form the basis of a system to measure, display, record and store the many parameters which characterize the operational conditions of the EM. In this mode it is operating as a data logger. The necessary first step is to find a suitable source from which to measure each of the items of interest. It is usually possible to do this without having to make permanent corrections or modifications to the EM.


Sign in / Sign up

Export Citation Format

Share Document