scholarly journals Transcriptome Analysis Reveals Unfolded Protein Response Was Induced During the Early Stage of Burkholderia pseudomallei Infection in A549 Cells

2020 ◽  
Vol 11 ◽  
Author(s):  
Chenglong Rao ◽  
Chan Mao ◽  
Yupei Xia ◽  
Meijuan Zhang ◽  
Zhiqiang Hu ◽  
...  

Burkholderia pseudomallei is a zoonotic pathogen that usually affects patients' lungs and causes serious melioidosis. The interaction of B. pseudomallei with its hosts is complex, and cellular response to B. pseudomallei infection in humans still remains to be elucidated. In this study, transcriptomic profiling of B. pseudomallei-infected human lung epithelial A549 cells was performed to characterize the cellular response dynamics during the early infection (EI) stage. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed by using the online databases DAVID 6.8 and KOBAS 3.0. Real-time quantitative PCR and western blot were used for validation experiments. Compared with the negative control group (NC), a set of 36 common genes varied over time with a cut-off level of 1.5-fold change, and a P-value < 0.05 was identified. Bioinformatics analysis indicated that the PERK-mediated unfolded protein response (UPR) was enriched as the most noteworthy biological process category, which was enriched as a branch of UPR in the signaling pathway of protein processing in the endoplasmic reticulum. Other categories, such as inflammatory responses, cell migration, and apoptosis, were also focused. The molecular chaperone Bip (GRP78), PERK, and PERK sensor-dependent phosphorylation of eIF2α (p-eIF2α) and ATF4 were verified to be increasing over time during the EI stage, suggesting that B. pseudomallei infection activated the PERK-mediated UPR in A549 cells. Collectively, these results provide important initial insights into the intimate interaction between B. pseudomallei and lung epithelial cells, which can be further explored toward the elucidation of the cellular mechanisms of B. pseudomallei infections in humans.

2019 ◽  
Vol 63 (11) ◽  
Author(s):  
Ana Carolina Alves de Paula e Silva ◽  
Haroldo Cesar de Oliveira ◽  
Liliana Scorzoni ◽  
Caroline Maria Marcos ◽  
Claudia Tavares dos Santos ◽  
...  

ABSTRACT The available antifungal therapeutic arsenal is limited. The search for alternative drugs with fewer side effects and new targets remains a major challenge. Decyl gallate (G14) is a derivative of gallic acid with a range of biological activities and broad-spectrum antifungal activity. Previously, our group demonstrated the promising anti-Paracoccidioides activity of G14. In this work, to evaluate the antifungal characteristics of G14 for Paracoccidioides lutzii, a chemical-genetic interaction analysis was conducted on a Saccharomyces cerevisiae model. N-glycosylation and/or the unfolded protein response pathway was identified as a high-confidence process for drug target prediction. The overactivation of unfolded protein response (UPR) signaling was confirmed using this model with IRE1/ATF6/PERK genes tagged with green fluorescent protein (GFP). In P. lutzii, this prediction was confirmed by the low activity of glycosylated enzymes [α-(1,3)-glucanase, N-acetyl-β-d-glucosaminidase (NAGase), and α-(1,4)-amylase], by hyperexpression of genes involved with the UPR and glycosylated enzymes, and by the reduction in the amounts of glycosylated proteins and chitin. All of these components are involved in fungal cell wall integrity and are dependent on the N-glycosylation process. This loss of integrity was confirmed by the reduction in mitochondrial activity, impaired budding, enhancement of wall permeability, and a decrease in viability. These events led to a reduction of the ability of fungi to adhere on human lung epithelial cells (A549) in vitro. Therefore, G14 may have an important role in balancing the inflammatory reaction caused by fungal infection, without interfering with the microbicidal activity of nitric oxide. This work provides new information on the activity of G14, a potential anti-Paracoccidioides compound.


2016 ◽  
Vol 311 (5) ◽  
pp. L846-L854 ◽  
Author(s):  
Hang Nguyen ◽  
Bruce D. Uhal

Recent work from this laboratory showed that endoplasmic reticulum (ER) stress-induced apoptosis of alveolar epithelial cells (AECs) is regulated by the autocrine angiotensin (ANG)II/ANG1-7 system. The proteasome inhibitor MG132 or surfactant protein C (SP-C) BRICHOS domain mutation G100S induced apoptosis in human AECs by activating the proapoptotic cathepsin D and reducing antiapoptotic angiotensin converting enzyme-2 (ACE-2). This study tested the hypothesis that ER stress-induced apoptosis of human AECs might be mediated by influence of the unfolded protein response (UPR) on the autocrine ANGII/ANG1-7 system. A549 cells were challenged with MG132 or SP-C BRICHOS domain mutant G100S to induce ER stress and activation of UPR pathways. The results showed that either MG132 or G100S SP-C mutation activated all three canonical pathways of the UPR (IRE1/XBP1, ATF6, and PERK/eIF2α), which led to a significant increase in cathepsin D or in TACE (an ACE-2 ectodomain shedding enzyme) and eventually caused AEC apoptosis. However, ER stress-induced AEC apoptosis could be prevented by chemical chaperone or by UPR blockers. It is also suggested that ATF6 and IRE1 pathways might play important role in regulation of angiotensin system. These data demonstrate that ER stress induces apoptosis in human AECs through mediation of UPR pathways, which in turn regulate the autocrine ANGII/ANG1-7 system. They also demonstrated that ER stress-induced AEC apoptosis can be blocked by inhibition of UPR signaling pathways.


2020 ◽  
Author(s):  
Shaliny Ramachandran ◽  
Tiffany Ma ◽  
Natalie Ng ◽  
Iosifina P. Foskolou ◽  
Ming-Shih Hwang ◽  
...  

ABSTRACTThe levels of hypoxia associated with resistance to radiotherapy significantly impact cancer patient prognosis. These levels of hypoxia initiate a unique transcriptional response with the rapid activation of numerous transcription factors in a background of global repression of transcription. Here, we show that the biological response to radiobiological hypoxia includes the induction of the DNA/RNA helicase SETX. In the absence of hypoxia-induced SETX, R-loop levels increase, DNA damage accumulates, and DNA replication rates decrease. SETX plays a key role in protecting cells from DNA damage induced during transcription in hypoxia. Importantly, we show that the mechanism of SETX induction is reliant on the PERK/ATF4 arm of the unfolded protein response. These data not only highlight the unique cellular response to radiobiological hypoxia, which includes both a replication stress dependent DNA damage response and an unfolded protein response but uncover a novel link between these two distinct pathways.


Cancers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 261
Author(s):  
Claire M. Robinson ◽  
Aaron Talty ◽  
Susan E. Logue ◽  
Katarzyna Mnich ◽  
Adrienne M. Gorman ◽  
...  

Pancreatic ductal adenocarcinoma (PDAC) is the most common form of pancreatic cancer and one of the leading causes of cancer-associated deaths in the world. It is characterised by dismal response rates to conventional therapies. A major challenge in treatment strategies for PDAC is the presence of a dense stroma that surrounds the tumour cells, shielding them from treatment. This unique tumour microenvironment is fuelled by paracrine signalling between pancreatic cancer cells and supporting stromal cell types including the pancreatic stellate cells (PSC). While our molecular understanding of PDAC is improving, there remains a vital need to develop effective, targeted treatments. The unfolded protein response (UPR) is an elaborate signalling network that governs the cellular response to perturbed protein homeostasis in the endoplasmic reticulum (ER) lumen. There is growing evidence that the UPR is constitutively active in PDAC and may contribute to the disease progression and the acquisition of resistance to therapy. Given the importance of the tumour microenvironment and cytokine signalling in PDAC, and an emerging role for the UPR in shaping the tumour microenvironment and in the regulation of cytokines in other cancer types, this review explores the importance of the UPR in PDAC biology and its potential as a therapeutic target in this disease.


2014 ◽  
Vol 95 (1) ◽  
pp. 71-79 ◽  
Author(s):  
Sankar Bhattacharyya ◽  
Utsav Sen ◽  
Sudhanshu Vrati

Japanese encephalitis virus (JEV) infection-induced encephalitis causes extensive death or long-term neurological damage, especially among children, in south and south-east Asia. Infection of mammalian cells has shown induction of an unfolded protein response (UPR), presumably leading to programmed cell death or apoptosis of the host cells. UPR, a cellular response to accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER) lumen, is initiated by three ER-lumen-resident sensors (PERK, IRE1 and ATF6), and involves transcriptional and translational regulation of the expression of several genes. The sensor IRE1 possesses an intrinsic RNase activity, activated through homo-dimerization and autophosphorylation during UPR. Activated IRE1 performs cytoplasmic cleavage of Xbp1u transcripts, thus facilitating synthesis of XBP1S transcription factor, in addition to cleavage of a cohort of cellular transcripts, the later initiating the regulated IRE1-dependent decay (RIDD) pathway. In this study, we report the initiation of the RIDD pathway in JEV-infected mouse neuroblastoma cells (Neuro2a) and its effect on viral infection. Activation of the RIDD pathway led to degradation of known mouse cell target transcripts without showing any effect on JEV RNA despite the fact that both when biochemically purified showed significant enrichment in ER membrane-enriched fractions. Additionally, inhibition of the IRE1 RNase activity by STF083010, a specific drug, diminished viral protein levels and reduced the titre of the virus produced from infected Neuro2a cells. The results present evidence for the first report of a beneficial effect of RIDD activation on the viral life cycle.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1576-1576
Author(s):  
Maria Moscvin ◽  
Tianzeng Chen ◽  
Peter G. Czarnecki ◽  
Annamaria Gulla ◽  
Kenneth C. Anderson ◽  
...  

Abstract Background AL amyloidosis (AL) is an incurable plasma cell (PC) disorder. The solely pathogenic mechanism in AL is deposition of immunoglobulin free light chains (FLC) organized in fibrils in target organs. Surprisingly, therapeutic strategies directly targeting FLC secretion are not available. SNARE proteins, which are the specific target of botulinum neurotoxin (BoNT), are involved in the docking and fusion of secretory vesicles. We hypothesized that certain BoNT serotypes may block FLC exocytosis, causing retention of FLC-loaded vesicles and triggering a terminal unfolded protein response (UPR). Materials and Methods Gene expression profiling in a cohort of 170 newly diagnosed multiple myeloma (MM) patients (IFM170) was used to interrogate SNAREs expression in malignant plasma cells. Western blotting (WB) was used to assess SNARE expression across MM and AL cell lines. We developed tetracycline inducible, lentiviral vectors expressing distinct BoNT serotypes (BoNT/A-F), T2A and GFP. Lentivirally transduced cells would express BoNT in a 1:1 stochiometric ratio with GFP, upon doxycycline (dox) administration, allowing for flow cytometry-based analysis. A vector comprising solely T2A and GFP was used as negative control. We transduced AL cell lines with Tet-On lentivirus expressing 7 distinct BoNTs and performed two sets of experiments. First, we performed time-course viability assays on polyclonally transduced cells and compared relative proportion of GFP+ cells over time. Then, we single-cell sorted transduced cells, triggered BoNT expression and assessed GFP kinetic and apoptosis via AnnexinV/DAPI flow cytometry at 24, 48 and 72 hours post dox. SNAREs cleavage following induction of BoNT expression was evaluated via WB in GFP+ clones. To assess if BoNT cytotoxicity correlated with cessation of FLC secretion, we performed a secretion assay in monoclones expressing distinct BoNTs. Results IFM170 GEP analysis showed VAMP2, VAMP3 and SNAP23 as the top expressed SNAREs. This was further confirmed in AL/MM cell lines. By using polyclonally transduced cells, we show that GFP+ cells are rapidly depleted over time after dox, across all serotypes, except BoNT/B, consistent with cytotoxic effect. Similarly, we observed rapid apoptosis in monoclones expressing any BoNT serotypes, except BoNT/B. We noted an association between SNAP23 and VAMP3 cleavage and BoNT toxicity, suggesting that dual targeting of SNAP23/VAMP3 may be necessary to mediate BoNT cytotoxicity. We next show that only BoNTs causing early cytotoxicity significantly inhibited FLC secretion. Cytotoxic BoNTs, activated PERK pathway with eIF2a phosphorylation (p-eIF2a); CHOP and GADD34 upregulation, presumably through FLC retention. Conclusions We show that cytotoxic BoNTs block FLC secretion, trigger a terminal UPR and induce apoptosis in AL and MM models. We provide proof of concept that targeting FLC secretion has a potential clinical translatability. Disclosures Czarnecki: Clearview: Consultancy. Anderson: Millenium-Takeda: Membership on an entity's Board of Directors or advisory committees; Janssen: Membership on an entity's Board of Directors or advisory committees; Sanofi-Aventis: Membership on an entity's Board of Directors or advisory committees; Bristol Myers Squibb: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Gilead: Membership on an entity's Board of Directors or advisory committees; Pfizer: Membership on an entity's Board of Directors or advisory committees; Scientific Founder of Oncopep and C4 Therapeutics: Current equity holder in publicly-traded company, Current holder of individual stocks in a privately-held company; AstraZeneca: Membership on an entity's Board of Directors or advisory committees; Mana Therapeutics: Membership on an entity's Board of Directors or advisory committees. Bianchi: Karyopharm: Consultancy, Honoraria; MJH: Honoraria; Jacob D. Fuchsberg Law Firm: Consultancy; Pfizer: Consultancy, Honoraria.


2015 ◽  
Vol 36 (6) ◽  
pp. 2403-2417 ◽  
Author(s):  
Shaoying Li ◽  
Liang Guo ◽  
Pin Qian ◽  
Yunfeng Zhao ◽  
Ao Liu ◽  
...  

Background: Alveolar epithelial cell death plays a critical role in the pathogenesis of lipopolysaccharide (LPS)-induced acute lung injury. Increased autophagy has a dual effect on cell survival. However, it is not known whether autophagy promotes death or survival in human alveolar epithelial cells exposed to LPS. Methods: Genetic and pharmacological approaches were used to evaluate the effect of autophagy on A549 cell viability upon LPS exposure. The endoplasmic reticulum (ER) stress and unfolded protein response (UPR) pathways were examined with immunoblotting studies to further explore underlying mechanisms. Results: Treatment with LPS (50 µg/ml) led to autophagy activation and decreased cell viability in A549 cells. Blocking autophagy via short interfering RNA or inhibitor significantly decreased, whereas rapamycin increased, the LPS-induced effect on viability. ER stress was activated in LPS-stimulated A549 cells, and ER stress inhibitor reduced LPS-induced autophagy. LPS activated only the PERK pathway and had rarely effect on the ATF6 and IRE1 branches of the UPR in A549 cells. Moreover, the knockdown of PERK and ATF4 attenuated LPS-induced autophagy and promoted cell survival. Conclusion: In human alveolar epithelial A549 cells, LPS induces autophagic cell death that depends on the activation of the PERK branch of the UPR upon ER stress.


2006 ◽  
Vol 80 (23) ◽  
pp. 11868-11880 ◽  
Author(s):  
Chia-Yi Yu ◽  
Yun-Wei Hsu ◽  
Ching-Len Liao ◽  
Yi-Ling Lin

ABSTRACT The unfolded protein response (UPR) is a coordinated change in gene expression triggered by perturbations in functions of the endoplasmic reticulum (ER). XBP1, a key transcription factor of the UPR, is activated by an IRE1-mediated splicing event, which results in a frameshift and encodes a protein with transcriptional activity. Here, we report that XBP1 was activated during flaviviral infection, as evidenced by XBP1 mRNA splicing and protein expression, as well as induction of the downstream genes ERdj4, EDEM1, and p58(IPK) in Japanese encephalitis virus (JEV)- and dengue virus serotype 2 (DEN-2)-infected cells. Reporter systems based on IRE1-mediated XBP1 splicing were established, and several flaviviral proteins associated with the ER, including glycoproteins and small hydrophobic membrane-anchored proteins, were found to trigger the splicing event. Notably, nonstructural protein NS2B-3 of DEN-2, but not of JEV, was a potent inducer of XBP1 splicing through an unclear mechanism(s). Reduction of XBP1 by a small interfering RNA had no effect on cells' susceptibility to the two viruses but exacerbated the flavivirus-induced cytopathic effects. Overall, flaviviruses trigger the XBP1 signaling pathway and take advantage of this cellular response to alleviate virus-induced cytotoxicity.


Sign in / Sign up

Export Citation Format

Share Document