scholarly journals DNA Methylation and Expression Profiles of Whole Blood in Parkinson’s Disease

2021 ◽  
Vol 12 ◽  
Author(s):  
Adrienne R. Henderson ◽  
Qi Wang ◽  
Bessie Meechoovet ◽  
Ashley L. Siniard ◽  
Marcus Naymik ◽  
...  

Parkinson’s disease (PD) is the second most common age-related neurodegenerative disease. It is presently only accurately diagnosed at an advanced stage by a series of motor deficits, which are predated by a litany of non-motor symptoms manifesting over years or decades. Aberrant epigenetic modifications exist across a range of diseases and are non-invasively detectable in blood as potential markers of disease. We performed comparative analyses of the methylome and transcriptome in blood from PD patients and matched controls. Our aim was to characterize DNA methylation and gene expression patterns in whole blood from PD patients as a foundational step toward the future goal of identifying molecular markers that could predict, accurately diagnose, or track the progression of PD. We found that differentially expressed genes (DEGs) were involved in the processes of transcription and mitochondrial function and that PD methylation profiles were readily distinguishable from healthy controls, even in whole-blood DNA samples. Differentially methylated regions (DMRs) were functionally varied, including near transcription factor nuclear transcription factor Y subunit alpha (NFYA), receptor tyrosine kinase DDR1, RING finger ubiquitin ligase (RNF5), acetyltransferase AGPAT1, and vault RNA VTRNA2-1. Expression quantitative trait methylation sites were found at long non-coding RNA PAX8-AS1 and transcription regulator ZFP57 among others. Functional epigenetic modules were highlighted by IL18R1, PTPRC, and ITGB2. We identified patterns of altered disease-specific DNA methylation and associated gene expression in whole blood. Our combined analyses extended what we learned from the DEG or DMR results alone. These studies provide a foundation to support the characterization of larger sample cohorts, with the goal of building a thorough, accurate, and non-invasive molecular PD biomarker.

2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Katherine R. Dobbs ◽  
Paula Embury ◽  
Emmily Koech ◽  
Sidney Ogolla ◽  
Stephen Munga ◽  
...  

Abstract Background Age-related changes in adaptive and innate immune cells have been associated with a decline in effective immunity and chronic, low-grade inflammation. Epigenetic, transcriptional, and functional changes in monocytes occur with aging, though most studies to date have focused on differences between young adults and the elderly in populations with European ancestry; few data exist regarding changes that occur in circulating monocytes during the first few decades of life or in African populations. We analyzed DNA methylation profiles, cytokine production, and inflammatory gene expression profiles in monocytes from young adults and children from western Kenya. Results We identified several hypo- and hyper-methylated CpG sites in monocytes from Kenyan young adults vs. children that replicated findings in the current literature of differential DNA methylation in monocytes from elderly persons vs. young adults across diverse populations. Differentially methylated CpG sites were also noted in gene regions important to inflammation and innate immune responses. Monocytes from Kenyan young adults vs. children displayed increased production of IL-8, IL-10, and IL-12p70 in response to TLR4 and TLR2/1 stimulation as well as distinct inflammatory gene expression profiles. Conclusions These findings complement previous reports of age-related methylation changes in isolated monocytes and provide novel insights into the role of age-associated changes in innate immune functions.


2021 ◽  
Author(s):  
Aoji Xie ◽  
Elizabeth Ensink ◽  
Peipei Li ◽  
Juozas Gordevicius ◽  
Lee L. Marshall ◽  
...  

Background The gut microbiome and its metabolites can impact brain health and are altered in Parkinson's disease (PD) patients. It has been recently demonstrated that PD patients have reduced fecal levels of the potent epigenetic modulator butyrate and its bacterial producers. Here, we investigate whether the changes in the gut microbiome and associated metabolites are linked to PD symptoms and epigenetic markers in leucocytes and neurons. Methods Stool, whole blood samples, and clinical data were collected from 55 PD patients and 55 controls. We performed DNA methylation analysis on whole blood samples and analyzed the results in relation to fecal short-chain fatty acid concentrations and microbiota composition. In another cohort, prefrontal cortex neurons were isolated from control and PD brains. We identified the genome-wide DNA methylation by targeted bisulfite sequencing. Results We show that lower fecal butyrate and reduced Roseburia, Romboutsia, and Prevotella counts are linked to depressive symptoms in PD patients. Genes containing butyrate-associated methylation sites include PD risk genes and significantly overlap with sites epigenetically altered in PD blood leucocytes, predominantly neutrophils, and in brain neurons, relative to controls. Moreover, butyrate-associated methylated-DNA (mDNA) regions in PD overlap with those altered in gastrointestinal, autoimmune, and psychiatric diseases.


2018 ◽  
Author(s):  
Yiru A. Wang ◽  
Basten L. Snoek ◽  
Mark G. Sterken ◽  
Joost A.G. Riksen ◽  
Jana J. Stastna ◽  
...  

AbstractAccumulation of protein aggregates is a major cause of Parkinson’s disease (PD), a progressive neurodegenerative condition that is one of the most common causes of dementia. Transgenic Caenorhabditis elegans worms expressing the human synaptic protein α-synuclein show inclusions of aggregated protein and replicate the defining pathological hallmarks of PD. It is however not known how PD progression and pathology differs among individual genetic backgrounds. Here, we compared gene expression patterns, and investigated the phenotypic consequences of transgenic α-synuclein expression in five different C. elegans genetic backgrounds. Transcriptome analysis indicates that the effects of -synuclein expression on pathways associated with nutrient storage, lipid transportation and ion exchange depend on the genetic background. The gene expression changes we observe suggest that a range of phenotypes will be affected by α-synuclein expression. We experimentally confirm this, showing that the transgenic lines generally show delayed development, reduced lifespan, and an increased rate of matricidal hatching. These phenotypic effects coincide with the core changes in gene expression, linking developmental arrest, mobility, metabolic and cellular repair mechanisms to α-synuclein expression. Together, our results show both genotype-specific effects and core alterations in global gene expression and in phenotype in response to -synuclein. We conclude that the PD effects are substantially modified by the genetic background, illustrating that genetic background mechanisms should be elucidated to understand individual variation in PD.


2021 ◽  
Author(s):  
Federico Ferraro ◽  
Christina Fevga ◽  
Vincenzo Bonifati ◽  
Wim Mandemakers ◽  
Ahmed Mahfouz ◽  
...  

Several studies have analyzed gene expression profiles in the substantia nigra to better understand the pathological mechanisms causing Parkinson's disease (PD). However, the concordance between the identified gene signatures in these individual studies was generally low. This might be caused by a change in cell type composition as loss of dopaminergic neurons in the substantia nigra pars compacta is a hallmark of PD. Through an extensive meta-analysis of nine previously published microarray studies, we demonstrated that a big proportion of the detected differentially expressed genes was indeed caused by cyto-architectural alterations due to the heterogeneity in the neurodegenerative stage and/or technical artifacts. After correcting for cell composition, we identified a common signature that deregulated the previously unreported ammonium transport, as well as known biological processes including bioenergetic pathways, response to proteotoxic stress, and immune response. By integrating with protein-interaction data, we shortlisted a set of key genes, such as LRRK2, PINK1, and PRKN known to be related to PD; others with compelling evidence for their role in neurodegeneration, such as GSK3β, WWOX, and VPC; as well as novel potential players in the PD pathogenesis, including NTRK1, TRIM25, ELAVL1. Together, these data showed the importance of accounting for cyto-architecture in these analyses and highlight the contribution of multiple cell types and novel processes to PD pathology providing potential new targets for drug development.


Stroke ◽  
2021 ◽  
Vol 52 (Suppl_1) ◽  
Author(s):  
Paulina Carmona-Mora ◽  
Glen C Jickling ◽  
Xinhua Zhan ◽  
Marisa Hakoupian ◽  
Heather Hull ◽  
...  

Introduction: After ischemic stroke (IS), peripheral leukocytes infiltrate the damaged region and modulate the response to injury. We previously showed that peripheral blood cells display different gene expression profiles after IS and these transcriptional programs reflect the changes in immune processes in response to IS. Dissecting the temporal dynamics of gene expression after IS improves our understanding of the changes of molecular and cellular pathways involved in acute brain injury. Methods: We analyzed the transcriptomic profiles of 33 IS patients in isolated monocytes, neutrophils and whole blood. RNA-sequencing was performed on all the stroke samples as well as 12 controls with vascular risk factors (diabetes and/or hypertension and/or hypercholesterolemia). To identify differentially expressed genes, subjects were split into time points (TPs) from stroke onset (TP1= 0-24 h; TP2= 24-48 h; and TP3= > 48 h), and controls were assigned TP0. A linear regression model including time and the interaction of diagnosis x TP with cutoff of p<0.02 and fold-change>|1.2| was used. Time dependent changes were analyzed using artificial neural networks to identify clusters of genes that behave in a similar way across TPs. Results: Unique patterns of temporal expression were distinguished for the three sample types. These include genes not expressed in TP0 that peak only within the first 24 h, others that peak or decrease in TP2 and TP3, and more complex patterns. Genes that peak at TP1 in monocytes and neutrophils are related to cell adhesion and leukocyte differentiation/migration, respectively. Early peaks in whole blood occur in genes related to transcriptional regulation. In monocytes, interleukin pathways are enriched across all TPs, whereas there is a trend of suppression after 24 h in neutrophils. The inflammasome pathway is enriched in the earlier TPs in neutrophils, while not enriched in monocytes until over 48 hours. Conclusion: Our analyses on gene expression dynamics and cluster patterns allow identification of key genes and pathways at different time points following ischemic injury that are valuable as IS biomarkers and may be possible treatment targets.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 3938-3938
Author(s):  
Sumiko Kurachi ◽  
Emi Suenaga ◽  
Kotoku Kurachi

Abstract For understanding aging as well as various age-related diseases, it is critical to establish the basic regulatory mechanisms underlying age-related homeostatsis. Through systematic analyses of transgenic mice carrying factor IX and protein C genes, we recently discovered the first molecular mechanism of age-related homeostasis, ASE/AIE-mediated age-related regulatory mechanism of gene expression (Kurachi et. al., Science 1999; Zhang et. al., J. Biol. Chem. 2002; J. Thromb. Haemost. 2005). This laid the foundation for further studies toward an integrated understanding of age-related homeostasis. Here we report global analyses of age-related expression profiles of mouse liver genes. For quantification of expression levels of liver genes of mice at 1, 3, 6, 12, 18 and 24 month of age, Affymetrix GeneChip® Mouse Expression Array 430A (MOE430A with 23,643 probes) were used. These microarray analyses detected 9148 probes as qualified meaningful and the data were subjected to extensive analyses by GeneSpring and IPA network analysis softwares. Real time PCR analyses of representative genes were performed for verifying excellent reproducibility of age-related expression profiles determined by microarray analyses. Age-related stages, particularly of puberty and aging, were identified as the major phases for age-related changes in gene expression. Strong relationships between expression level and ontology, indicating that the highest expression gene group, next highest expression group and lowest level expression gene group are of secreted proteins, mitochondoreal proteins and nuclear regulatory protein, respectively. Most importantly, we successfully identified about a dozen unique and fundamental age-related gene expression patterns including those of age-related stable, gradual increase or decrease, and aging-related dramatic increase or decrease types of expression. These findings led us to a new hypothesis that complex and dynamic age-related regulations of genes are produced by a relatively small number of fundamental regulatory mechanisms. These mechanisms may function independently or in various combinations, thus explaining an essential feature of age-related homeostasis.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Xiao-Yang Liao ◽  
Wei-Wen Wang ◽  
Zheng-Hui Yang ◽  
Jun Wang ◽  
Hang Lin ◽  
...  

To complement the molecular pathways contributing to Parkinson’s disease (PD) and identify potential biomarkers, gene expression profiles of two regions of the medulla were compared between PD patients and control. GSE19587 containing two groups of gene expression profiles [6 dorsal motor nucleus of the vagus (DMNV) samples from PD patients and 5 from controls, 6 inferior olivary nucleus (ION) samples from PD patients and 5 from controls] was downloaded from Gene Expression Omnibus. As a result, a total of 1569 and 1647 differentially expressed genes (DEGs) were, respectively, screened in DMNV and ION with limma package ofR. The functional enrichment analysis by DAVID server (the Database for Annotation, Visualization and Integrated Discovery) indicated that the above DEGs may be involved in the following processes, such as regulation of cell proliferation, positive regulation of macromolecule metabolic process, and regulation of apoptosis. Further analysis showed that there were 365 common DEGs presented in both regions (DMNV and ION), which may be further regulated by eight clusters of microRNAs retrieved with WebGestalt. The genes in the common DEGs-miRNAs regulatory network were enriched in regulation of apoptosis process via DAVID analysis. These findings could not only advance the understandings about the pathogenesis of PD, but also suggest potential biomarkers for this disease.


2016 ◽  
Vol 101 ◽  
pp. 576-589 ◽  
Author(s):  
Irene R. Taravini ◽  
Celia Larramendy ◽  
Gimena Gomez ◽  
Mariano D. Saborido ◽  
Floor Spaans ◽  
...  

Cells ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 198
Author(s):  
Federico Ferraro ◽  
Christina Fevga ◽  
Vincenzo Bonifati ◽  
Wim Mandemakers ◽  
Ahmed Mahfouz ◽  
...  

Several studies have analyzed gene expression profiles in the substantia nigra to better understand the pathological mechanisms causing Parkinson’s disease (PD). However, the concordance between the identified gene signatures in these individual studies was generally low. This might have been caused by a change in cell type composition as loss of dopaminergic neurons in the substantia nigra pars compacta is a hallmark of PD. Through an extensive meta-analysis of nine previously published microarray studies, we demonstrated that a big proportion of the detected differentially expressed genes was indeed caused by cyto-architectural alterations due to the heterogeneity in the neurodegenerative stage and/or technical artefacts. After correcting for cell composition, we identified a common signature that deregulated the previously unreported ammonium transport, as well as known biological processes such as bioenergetic pathways, response to proteotoxic stress, and immune response. By integrating with protein interaction data, we shortlisted a set of key genes, such as LRRK2, PINK1, PRKN, and FBXO7, known to be related to PD, others with compelling evidence for their role in neurodegeneration, such as GSK3β, WWOX, and VPC, and novel potential players in the PD pathogenesis. Together, these data show the importance of accounting for cyto-architecture in these analyses and highlight the contribution of multiple cell types and novel processes to PD pathology, providing potential new targets for drug development.


Sign in / Sign up

Export Citation Format

Share Document