scholarly journals A Novel Method to Identify the Differences Between Two Single Cell Groups at Single Gene, Gene Pair, and Gene Module Levels

2021 ◽  
Vol 12 ◽  
Author(s):  
Lingyu Cui ◽  
Bo Wang ◽  
Changjing Ren ◽  
Ailan Wang ◽  
Hong An ◽  
...  

Single-cell sequencing technology can not only view the heterogeneity of cells from a molecular perspective, but also discover new cell types. Although there are many effective methods on dropout imputation, cell clustering, and lineage reconstruction based on single cell RNA sequencing (RNA-seq) data, there is no systemic pipeline on how to compare two single cell clusters at the molecular level. In the study, we present a novel pipeline on comparing two single cell clusters, including calling differential gene expression, coexpression network modules, and so on. The pipeline could reveal mechanisms behind the biological difference between cell clusters and cell types, and identify cell type specific molecular mechanisms. We applied the pipeline to two famous single-cell databases, Usoskin from mouse brain and Xin from human pancreas, which contained 622 and 1,600 cells, respectively, both of which were composed of four types of cells. As a result, we identified many significant differential genes, differential gene coexpression and network modules among the cell clusters, which confirmed that different cell clusters might perform different functions.

2019 ◽  
Author(s):  
Kelly M. Bakulski ◽  
John F. Dou ◽  
Robert C. Thompson ◽  
Christopher Lee ◽  
Lauren Y. Middleton ◽  
...  

AbstractBackgroundLead (Pb) exposure is ubiquitous and has permanent developmental effects on childhood intelligence and behavior and adulthood risk of dementia. The hippocampus is a key brain region involved in learning and memory, and its cellular composition is highly heterogeneous. Pb acts on the hippocampus by altering gene expression, but the cell type-specific responses are unknown.ObjectiveExamine the effects of perinatal Pb treatment on adult hippocampus gene expression, at the level of individual cells, in mice.MethodsIn mice perinatally exposed to control water (n=4) or a human physiologically-relevant level (32 ppm in maternal drinking water) of Pb (n=4), two weeks prior to mating through weaning, we tested for gene expression and cellular differences in the hippocampus at 5-months of age. Analysis was performed using single cell RNA-sequencing of 5,258 cells from the hippocampus by 10x Genomics Chromium to 1) test for gene expression differences averaged across all cells by treatment; 2) compare cell cluster composition by treatment; and 3) test for gene expression and pathway differences within cell clusters by treatment.ResultsGene expression patterns revealed 12 cell clusters in the hippocampus, mapping to major expected cell types (e.g. microglia, astrocytes, neurons, oligodendrocytes). Perinatal Pb treatment was associated with 12.4% more oligodendrocytes (P=4.4×10−21) in adult mice. Across all cells, differential gene expression analysis by Pb treatment revealed cluster marker genes. Within cell clusters, differential gene expression with Pb treatment (q<0.05) was observed in endothelial, microglial, pericyte, and astrocyte cells. Pathways up-regulated with Pb treatment were protein folding in microglia (P=3.4×10−9) and stress response in oligodendrocytes (P=3.2×10−5).ConclusionBulk tissue analysis may be confounded by changes in cell type composition and may obscure effects within vulnerable cell types. This study serves as a biological reference for future single cell studies of toxicant or neuronal complications, to ultimately characterize the molecular basis by which Pb influences cognition and behavior.


Gene Therapy ◽  
2021 ◽  
Author(s):  
A. S. Mathew ◽  
C. M. Gorick ◽  
R. J. Price

AbstractGene delivery via focused ultrasound (FUS) mediated blood-brain barrier (BBB) opening is a disruptive therapeutic modality. Unlocking its full potential will require an understanding of how FUS parameters (e.g., peak-negative pressure (PNP)) affect transfected cell populations. Following plasmid (mRuby) delivery across the BBB with 1 MHz FUS, we used single-cell RNA-sequencing to ascertain that distributions of transfected cell types were highly dependent on PNP. Cells of the BBB (i.e., endothelial cells, pericytes, and astrocytes) were enriched at 0.2 MPa PNP, while transfection of cells distal to the BBB (i.e., neurons, oligodendrocytes, and microglia) was augmented at 0.4 MPa PNP. PNP-dependent differential gene expression was observed for multiple cell types. Cell stress genes were upregulated proportional to PNP, independent of cell type. Our results underscore how FUS may be tuned to bias transfection toward specific brain cell types in vivo and predict how those cells will respond to transfection.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
Yong Zhong ◽  
Xiangcheng Xiao

Abstract Background and Aims The exact molecular mechanisms underlying IgA nephropathy (IgAN) remains incompletely defined. Therefore, it is necessary to further elucidate the mechanism of IgA nephropathy and find novel therapeutic targets. Method Single-cell RNA sequencing (scRNA-seq) was applied to kidney biopsies from 4 IgAN and 1 control subjects to define the transcriptomic landscape at the single-cell resolution. Unsupervised clustering analysis of kidney specimens was used to identify distinct cell clusters. Differentially expressed genes and potential signaling pathways involved in IgAN were also identified. Results Our analysis identified 14 cell subsets in kidney biopsies from IgAN patients, and analyzed changing gene expression in distinct renal cell types. We found increased mesangial expression of several novel genes including MALAT1, GADD45B, SOX4 and EDIL3, which were related to proliferation and matrix accumulation and have not been reported in IgAN previously. The overexpressed genes in tubule cells of IgAN were mainly enriched in inflammatory pathways including TNF signaling, IL-17 signaling and NOD-like receptor signaling. Moreover, the receptor-ligand crosstalk analysis revealed potential interactions between mesangial cells and other cells in IgAN. Specifically, IgAN with overt proteinuria displayed elevated genes participating in several signaling pathways which may be involved in pathogenesis of progression of IgAN. Conclusion The comprehensive analysis of kidney biopsy specimen demonstrated different gene expression profile, potential pathologic ligand-receptor crosstalk, signaling pathways in human IgAN. These results offer new insight into pathogenesis and identify new therapeutic targets for patients with IgA nephropathy.


2021 ◽  
Author(s):  
Stella Belonwu ◽  
Yaqiao Li ◽  
Daniel Bunis ◽  
Arjun Arkal Rao ◽  
Caroline Warly Solsberg ◽  
...  

Abstract Alzheimer’s Disease (AD) is a complex neurodegenerative disease that gravely affects patients and imposes an immense burden on caregivers. Apolipoprotein E4 (APOE4) has been identified as the most common genetic risk factor for AD, yet the molecular mechanisms connecting APOE4 to AD are not well understood. Past transcriptomic analyses in AD have revealed APOE genotype-specific transcriptomic differences; however, these differences have not been explored at a single-cell level. Here, we leverage the first two single-nucleus RNA sequencing AD datasets from human brain samples, including nearly 55,000 cells from the prefrontal and entorhinal cortices. We observed more global transcriptomic changes in APOE4 positive AD cells and identified differences across APOE genotypes primarily in glial cell types. Our findings highlight the differential transcriptomic perturbations of APOE isoforms at a single-cell level in AD pathogenesis and have implications for precision medicine development in the diagnosis and treatment of AD.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Abha S. Bais ◽  
Débora M. Cerqueira ◽  
Andrew Clugston ◽  
Andrew J. Bodnar ◽  
Jacqueline Ho ◽  
...  

AbstractThe kidney is a complex organ composed of more than 30 terminally differentiated cell types that all are required to perform its numerous homeostatic functions. Defects in kidney development are a significant cause of chronic kidney disease in children, which can lead to kidney failure that can only be treated by transplant or dialysis. A better understanding of molecular mechanisms that drive kidney development is important for designing strategies to enhance renal repair and regeneration. In this study, we profiled gene expression in the developing mouse kidney at embryonic day 14.5 at single-cell resolution. Consistent with previous studies, clusters with distinct transcriptional signatures clearly identify major compartments and cell types of the developing kidney. Cell cycle activity distinguishes between the “primed” and “self-renewing” sub-populations of nephron progenitors, with increased expression of the cell cycle-related genes Birc5, Cdca3, Smc2 and Smc4 in “primed” nephron progenitors. In addition, augmented expression of cell cycle related genes Birc5, Cks2, Ccnb1, Ccnd1 and Tuba1a/b was detected in immature distal tubules, suggesting cell cycle regulation may be required for early events of nephron patterning and tubular fusion between the distal nephron and collecting duct epithelia.


2021 ◽  
Author(s):  
Zhibin Li ◽  
chengcheng Sun ◽  
Fei Wang ◽  
Xiran Wang ◽  
Jiacheng Zhu ◽  
...  

Background: Immune cells play important roles in mediating immune response and host defense against invading pathogens. However, insights into the molecular mechanisms governing circulating immune cell diversity among multiple species are limited. Methods: In this study, we compared the single-cell transcriptomes of 77 957 immune cells from 12 species using single-cell RNA-sequencing (scRNA-seq). Distinct molecular profiles were characterized for different immune cell types, including T cells, B cells, natural killer cells, monocytes, and dendritic cells. Results: The results revealed the heterogeneity and compositions of circulating immune cells among 12 different species. Additionally, we explored the conserved and divergent cellular cross-talks and genetic regulatory networks among vertebrate immune cells. Notably, the ligand and receptor pair VIM-CD44 was highly conserved among the immune cells. Conclusions: This study is the first to provide a comprehensive analysis of the cross-species single-cell atlas for peripheral blood mononuclear cells (PBMCs). This research should advance our understanding of the cellular taxonomy and fundamental functions of PBMCs, with important implications in evolutionary biology, developmental biology, and immune system disorders


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Youjin Hu ◽  
Jiawei Zhong ◽  
Yuhua Xiao ◽  
Zheng Xing ◽  
Katherine Sheu ◽  
...  

Abstract The differences in transcription start sites (TSS) and transcription end sites (TES) among gene isoforms can affect the stability, localization, and translation efficiency of mRNA. Gene isoforms allow a single gene diverse functions across different cell types, and isoform dynamics allow different functions over time. However, methods to efficiently identify and quantify RNA isoforms genome-wide in single cells are still lacking. Here, we introduce single cell RNA Cap And Tail sequencing (scRCAT-seq), a method to demarcate the boundaries of isoforms based on short-read sequencing, with higher efficiency and lower cost than existing long-read sequencing methods. In conjunction with machine learning algorithms, scRCAT-seq demarcates RNA transcripts with unprecedented accuracy. We identified hundreds of previously uncharacterized transcripts and thousands of alternative transcripts for known genes, revealed cell-type specific isoforms for various cell types across different species, and generated a cell atlas of isoform dynamics during the development of retinal cones.


2021 ◽  
Vol 41 (3) ◽  
pp. 1012-1018
Author(s):  
Jean Acosta ◽  
Daniel Ssozi ◽  
Peter van Galen

The blood system is often represented as a tree-like structure with stem cells that give rise to mature blood cell types through a series of demarcated steps. Although this representation has served as a model of hierarchical tissue organization for decades, single-cell technologies are shedding new light on the abundance of cell type intermediates and the molecular mechanisms that ensure balanced replenishment of differentiated cells. In this Brief Review, we exemplify new insights into blood cell differentiation generated by single-cell RNA sequencing, summarize considerations for the application of this technology, and highlight innovations that are leading the way to understand hematopoiesis at the resolution of single cells. Graphic Abstract: A graphic abstract is available for this article.


2020 ◽  
Author(s):  
Wenhua You ◽  
Xiangyu Li ◽  
Peng Wang ◽  
Bowen Sha ◽  
Yuan Liang ◽  
...  

Abstract Background: Gallbladder cancer (GBC) is a highly aggressive biliary epithelial malignancy. Tumor invasion and metastasis contributed to the high mortality of GBC patients. However, molecular mechanisms involved in GBC metastases are still little known. Methods: We performed single-cell RNA sequencing on GBC liver metastasis tissue and analyzed the data based on different cell types.Results: In this study, 8 cell types, including T cells, B cells, malignant cells, fibroblasts, endothelial cells, macrophages, dendritic cells, and mast cells were identified. Malignant cells displayed a high degree of intra-tumor heterogenicity and neutrophils could promote GBC progression in vitro. Besides, cytotoxic CD8+ T cells became exhausted and CD4+ Tregs presented immunosuppressive characteristics. Macrophages played an important role in the tumor microenvironment. We identified three distinct macrophage subsets and emerged M2 polarization. We also found that cancer-associated fibroblasts exhibited heterogeneity and promoted GBC metastasis. Conclusions: In conclusion, our work provided a landscape view at the single-cell level and may clear the way for the therapy of GBC metastases.


2021 ◽  
Author(s):  
Wenjing Ma ◽  
Sumeet Sharma ◽  
Peng Jin ◽  
Shannon L Gourley ◽  
Zhaohui Qin

The rapid proliferation of single-cell RNA-sequencing (scRNA-seq) datasets have revealed cell heterogeneity at unprecedented scales. Several deconvolution methods have been developed to decompose bulk experiments to reveal cell type contributions. However, these methods lack power in identifying the accurate cell type composition when having a considerable amount of sub-cell types in the reference dataset. Here, we present LRcell, a R Bioconductor package (http://bioconductor.org/packages/release/bioc/html/LRcell.html) aiming to identify specific sub-cell type(s) that drives the changes observed in a bulk RNA-seq differential gene expression experiment. In addition, LRcell provides pre-embedded marker genes computed from putative single-cell RNA-seq experiments as options to execute the analyses.


Sign in / Sign up

Export Citation Format

Share Document