scholarly journals Identification of Potential Novel Prognosis-Related Genes Through Transcriptome Sequencing, Bioinformatics Analysis, and Clinical Validation in Acute Myeloid Leukemia

2021 ◽  
Vol 12 ◽  
Author(s):  
Jie Wang ◽  
Md. Nazim Uddin ◽  
Jian-ping Hao ◽  
Rong Chen ◽  
Yun-xia Xiang ◽  
...  

Background: Acute Myeloid Leukemia (AML) is a complex and heterogeneous hematologic malignancy. However, the function of prognosis-related signature genes in AML remains unclear.Methods: In the current study, transcriptome sequencing was performed on 15 clinical samples, differentially expressed RNAs were identified using R software. The potential interactions network was constructed by using the common genes between target genes of differentially expressed miRNAs with transcriptome sequencing results. Functional and pathway enrichment analysis was performed to identify candidate gene-mediated aberrant signaling pathways. Hub genes were identified by the cytohubba plugin in Cytoscape software, which then expanded the potential interactions regulatory module for hub genes. TCGA-LAML clinical data were used for the prognostic analysis of the hub genes in the regulatory network, and GVSA analysis was used to identify the immune signature of prognosis-related hub genes. qRT-PCR was used to verify the expression of hub genes in independent clinical samples.Results: We obtained 1,610 differentially expressed lncRNAs, 233 differentially expressed miRNAs, and 2,217 differentially expressed mRNAs from transcriptome sequencing. The potential interactions network is constructed by 12 lncRNAs, 25 miRNAs, and 692 mRNAs. Subsequently, a sub-network including 15 miRNAs as well as 12 lncRNAs was created based on the expanded regulatory modules of 25 key genes. The prognostic analysis results show that CCL5 and lncRNA UCA1 was a significant impact on the prognosis of AML. Besides, we found three potential interactions networks such as lncRNA UCA1/hsa-miR-16-5p/COL4A5, lncRNA UCA1/hsa-miR-16-5p/SPARC, and lncRNA SNORA27/hsa-miR-17-5p/CCL5 may play an important role in AML. Furthermore, the evaluation of the immune infiltration shows that CCL5 is positively correlated with various immune signatures, and lncRNA UCA1 is negatively correlated with the immune signatures. Finally, the result of qRT-PCR showed that CCL5 is down-regulated and lncRNA UCA1 is up-regulated in AML samples separately.Conclusions: In conclusion, we propose that CCL5 and lncRNA UCA1 could be recognized biomarkers for predicting survival prognosis based on constructing competing endogenous RNAs in AML, which will provide us novel insight into developing novel prognostic, diagnostic, and therapeutic for AML.

2011 ◽  
Vol 58 (5) ◽  
pp. 715-721 ◽  
Author(s):  
Astrid A. Danen-van Oorschot ◽  
Jenny E. Kuipers ◽  
Susan Arentsen-Peters ◽  
Diana Schotte ◽  
Valerie de Haas ◽  
...  

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Caixia Han ◽  
Shujiao He ◽  
Ruiqi Wang ◽  
Xuefeng Gao ◽  
Hong Wang ◽  
...  

Abstract Background Rho GTPase activating protein 9 (ARHGAP9) is expressed in various types of cancers and can inactivate Rho GTPases that mainly regulate cytoskeletal dynamics. However, the exact role of ARHGAP9 in acute myeloid leukemia (AML) has yet to be clarified. Methods We compared the transcriptional expression, prognosis, differentially expressed genes, functional enrichment, and hub genes in AML patients on the basis of the data published in the following databases: UALCAN, GEPIA, Gene Expression Omnibus, the Human Protein Atlas, Cancer Cell Line Encyclopedia, LinkedOmics, Metascape, and String. Data from the Cancer Genome Atlas database was used to evaluate the correlations between ARHGAP9 expression and various clinicopathological parameters, as well as the significantly different genes associated with ARHGAP9 expression. Results We found that ARHGAP9 expression was higher in the tissues and cell lines extracted from patients with AML than corresponding control tissues and other cancer types. ARHGAP9 overexpression was associated with decreased overall survival (OS) in AML. Compared with the ARHGAP9low group, the ARHGAP9high group, which received only chemotherapy, showed significantly worse OS and event-free survival (EFS); however, no significant difference was observed after treatment with autologous or allogeneic hematopoietic stem cell transplantation (auto/allo-HSCT). The ARHGAP9high patients undergoing auto/allo-HSCT also had a significantly better prognosis with respect to OS and EFS than those receiving only chemotherapy. Most overlapping genes of the significantly different genes and co-expression genes exhibited enriched immune functions, suggesting the immune regulation potential of ARHGAP9 in AML. A total of 32 hub genes were identified from the differentially expressed genes, within which the KIF20A had a significant prognostic value for AML. Conclusions ARHGAP9 overexpression was associated with poor OS in AML patients and can be used as a prognostic biomarker. AML patients with ARHGAP9 overexpression can benefit from auto/allo-HSCT rather than chemotherapy.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yuanxiang Lu ◽  
Wensen Li ◽  
Ge Liu ◽  
Yongbo Yang ◽  
Erwei Xiao ◽  
...  

Abstract Background Duodenal papilla carcinoma (DPC) is a rare malignancy of the gastrointestinal tract with high recurrence rate, and the pathogenesis of this highly malignant neoplasm is yet to be fully elucidated. This study aims to identify key genes to further understand the biology and pathogenesis underlying the molecular alterations driving DPC, which could be potential diagnostic or therapeutic targets. Methods Tumor samples of three DPC patients were collected and integrating RNA-seq analysis of tumor tissues and matched normal tissues were performed to discover differentially expressed genes (DEGs). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were carried out to understand the potential bio-functions of the DPC differentially expressed genes (DEGs). Protein–protein interaction (PPI) network was constructed for functional modules analysis and identification of hub genes. qRT-PCR of clinical samples was conducted to validate the expression level of the hub genes. Results A total of 110 DEGs were identified from our RNA-seq data, GO and KEGG analyses showed that the DEGs were mainly enriched in multiple cancer-related functions and pathways, such as cell proliferation, IL-17signaling pathway, Jak-STAT signaling pathway, PPAR signaling pathway. The PPI network screened out five hub genes including IL-6, LCN2, FABP4, LEP and MMP1, which were identified as core genes in the network and the expression value were validated by qRT-PCR. The hub genes identified in this work were suggested to be potential therapeutic targets of DPC. Discussion The current study may provide new insight into the exploration of DPC pathogenesis and the screened hub genes may serve as potential diagnostic indicator and novel therapeutic target.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 6-7
Author(s):  
Han Zhong Pei ◽  
Yao Guo ◽  
Bo Lu ◽  
Zhiguang Chang ◽  
Dengyang Zhang ◽  
...  

Acute myeloid leukemia (AML) is a hematological malignancy featured by impaired differentiation and uncontrolled proliferation of myeloid blasts. FLT3 internal tandem duplication (ITD) presents in 30-40% patients with AML, which serves as an independent poor prognostic marker and an attractive therapeutic target. Up to date, several tyrosine kinase inhibitors (TKIs) targeting FLT3 have been approved by FDA in the treatment of AML. However, FLT3 TKIs as single agents have limited effects to eliminate AML cells due to multiple drug-resistant mechanisms, including secondary FLT3 mutations, alternatively activated cell survival pathways, upregulation of FLT3 ligand, and downregulation of tumor suppressor genes. In the present study, we found that FLT3 TKIs decreased tumor suppressor p53 protein level by downregulation of YOD1 through miR-181 in FLT3-ITD mutant AML cells. In our previous studies, we generated FLT3-ITD transformed HCD-57 cells. HCD-57 cells are erythroleukemia cells that depend on erythropoietin for survival. When infected with recombinant retroviruses carrying FLT3-ITD, they acquired ability to proliferate in the absence of EPO. By using transcriptome analysis with RNAseq, we identified multiple differentially expressed miRNAs in HCD-57 transformed by FLT3-ITD, compared with parental HCD-57 cells. miR-181a-5p and miR-181b-5p were among these highly differentially expressed miRNAs. These two miRNAs were predicted to bind in 3'UTR of deubiquitinase YOD1 by using TargetScanHuman 7.2, an online tool to predict biological targets of miRNAs. Previous studies have shown that the ubiquitination and protein level of p53 is dysregulated due to overexpressed E3 ligase MDM2/4 in AML cells, but few studies focused on deubiquitinase of p53. We found that deubiquitinase YOD1 interacted with p53 by immunoprecipitation. Overexpression of YOD1 prevented degradation of p53 led by cycloheximide, a protein synthesis inhibitor. We further found that overexpression of YOD1 resulted in decreased ubiquitination of p53, indicating that YOD1 stabilized p53 protein through deubiquitination. Subsequently, we detected the expression of miR-181, YOD1 and p53 in a FLT3-ITD positive AML cell line MV-4-11 treated by FLT3 TKIs sorafenib, sunitinib and quizartinib. Real-time quantitative PCR showed that the treatment of FLT3 TKIs upregulated the expression of miR-181a-5p/miR-181b-5p, and downregulated mRNA level of their predicted target YOD1. The mRNA level of p53 remained unchanged but its protein level decreased with enhanced ubiquitination in MV-4-11 cells treated by FLT3 TKIs in the ubiquitination assay. These data suggested that FLT3 TKIs could reduce the stability of p53 by regulating miRNA-targeted YOD1. In addition, we collected peripheral blood mononuclear cells (PBMCs) from patients with AML and age-matched healthy donors. We found increased expression of miR-181a-5p and miR-181b-5p and decreased expression of YOD1 in PBMCs from AML patients compared with healthy donors, suggesting a pathological role of miR-181 to regulate YOD1/53 pathway in AML. In conclusion, our data showed that FLT3 TKIs induced instability of p53 by miR-181 mediated downregulation of YOD1. YOD1 as a novel deubiquitinase of p53 could play important roles in drug-resistance and progression of AML. Disclosures No relevant conflicts of interest to declare.


Cancers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1480
Author(s):  
Hiresh Ayoubian ◽  
Joana Heinzelmann ◽  
Sebastian Hölters ◽  
Oybek Khalmurzaev ◽  
Alexey Pryalukhin ◽  
...  

Although microRNAs are described as promising biomarkers in many tumor types, little is known about their role in PSCC. Thus, we attempted to identify miRNAs involved in tumor development and metastasis in distinct histological subtypes considering the impact of HPV infection. In a first step, microarray analyses were performed on RNA from formalin-fixed, paraffin-embedded tumor (22), and normal (8) tissue samples. Microarray data were validated for selected miRNAs by qRT-PCR on an enlarged cohort, including 27 tumor and 18 normal tissues. We found 876 significantly differentially expressed miRNAs (p ≤ 0.01) between HPV-positive and HPV-negative tumor samples by microarray analysis. Although no significant differences were detected between normal and tumor tissue in the whole cohort, specific expression patterns occurred in distinct histological subtypes, such as HPV-negative usual PSCC (95 differentially expressed miRNAs, p ≤ 0.05) and HPV-positive basaloid/warty subtypes (247 differentially expressed miRNAs, p ≤ 0.05). Selected miRNAs were confirmed by qRT-PCR. Furthermore, microarray data revealed 118 miRNAs (p ≤ 0.01) that were significantly differentially expressed in metastatic versus non-metastatic usual PSCC. The lower expression levels for miR-137 and miR-328-3p in metastatic usual PSCC were validated by qRT-PCR. The results of this study confirmed that specific miRNAs could serve as potential diagnostic and prognostic markers in single PSCC subtypes and are associated with HPV-dependent pathways.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Leilei Lin ◽  
Yu Wang ◽  
Sicheng Bian ◽  
Lili Sun ◽  
Zhibo Guo ◽  
...  

Abstract Background As a common haematological malignancy, acute myeloid leukaemia (AML), particularly with extramedullary infiltration (EMI), often results in a high mortality rate and poor prognosis. Circular RNAs (circRNAs) regulate biological and pathogenic processes, suggesting a potential role in AML. We have previously described the overall alterations in circRNAs and their regulatory networks between patients with AML presenting with and without EMI. This study aims to find new prognostic and therapeutic targets potentially associated with AML. Methods qRT-PCR was performed on samples from 40 patients with AML and 15 healthy controls. The possibility of using circPLXNB2 (circRNA derived from PLXNB2) as a diagnostic and prognostic biomarker for AML was analysed with multiple statistical methods. In vitro, the function of circPLXNB2 was studied by lentivirus transfection, CCK-8 assays, flow cytometry, and Transwell experiments. Western blotting and qRT-PCR were performed to detect the expression of related proteins and genes. The distribution of circPLXNB2 in cells was observed using RNA fluorescence in situ hybridization (RNA-FISH). We also investigated the role of circPLXNB2 by establishing AML xenograft models in NOD/SCID mice. Results By analysing the results of qRT-PCR detection of clinical samples, the expression of the circPLXNB2 and PLXNB2 mRNAs were significantly increased in patients with AML, more specifically in patients with AML presenting with EMI. High circPLXNB2 expression was associated with an obviously shorter overall survival and leukaemia-free survival of patients with AML. The circPLXNB2 expression was positively correlated with PLXNB2 mRNA expression, as evidenced by Pearson’s correlation analysis. RNA-FISH revealed that circPLXNB2 is mainly located in the nucleus. In vitro and in vivo, circPLXNB2 promoted cell proliferation and migration and inhibited apoptosis. Notably, circPLXNB2 also increased the expression of PLXNB2, BCL2 and cyclin D1, and reduced the expression of BAX. Conclusion In summary, we validated the high expression of circPLXNB2 and PLXNB2 in patients with AML. Elevated circPLXNB2 levels were associated with poor clinical outcomes in patients with AML. Importantly, circPLXNB2 accelerated tumour growth and progression, possibly by regulating PLXNB2 expression. Our study highlights the potential of circPLXNB2 as a new prognostic predictor and therapeutic target for AML in the future.


Blood ◽  
2006 ◽  
Vol 108 (10) ◽  
pp. 3530-3537 ◽  
Author(s):  
Leman Yalcintepe ◽  
Arthur E. Frankel ◽  
Donna E. Hogge

AbstractThe interleukin-3 receptor (IL-3R) subunits are overexpressed on acute myeloid leukemia (AML) blasts compared with normal hematopoietic cells and are thus potential targets for novel therapeutic agents. Both fluorescence-activated cell sorter (FACS) analysis and quantitative real-time reverse transcription-polymerase chain reaction (QRT-PCR) were used to quantify expression of the IL-3Rα and βc subunits on AML cells. QRT-PCR for both subunits was most predictive of killing of AML colony-forming cells (AML-CFCs) by diphtheria toxin-IL-3 fusion protein (DT388IL3). Among 19 patient samples, the relative level of the IL-3Rα was higher than the IL-3Rβc and highest in CD34+CD38-CD71- cells, enriched for candidate leukemia stem cells, compared with cell fractions depleted of such progenitors. Overall, the amount of IL-3Rβc subunit did not vary among sorted subpopulations. However, expression of both subunits varied by more than 10-fold among different AML samples for all subpopulations studied. The level of IL-3Rβc expression versus glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (set at 1000) ranged from 0.14 to 13.56 in CD34+CD38-CD71- cells from different samples; this value was correlated (r = .76, P = .05) with the ability of DT388IL3 to kill AML progenitors that engraft in β2-microglobin-deficient nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice (n = 7). Thus, quantification of IL-3R subunit expression on AML blasts predicts the effectiveness IL-3R-targeted therapy in killing primitive leukemic progenitors.


2020 ◽  
Vol 63 (2) ◽  
pp. 303-313
Author(s):  
Li Li ◽  
Linli Zhang ◽  
Zhenghong Zhang ◽  
Nemat O. Keyhani ◽  
Qingwu Xin ◽  
...  

Abstract. Testicular transcriptomes were analyzed to characterize the differentially expressed genes between mulard and Pekin ducks, which will help establish gene expression datasets to assist in further determination of the mechanisms of genetic sterility in mulard ducks. Paraffin sections were made to compare the developmental differences in testis tissue between mulard and Pekin ducks. Comparative transcriptome sequencing of testis tissues was performed, and the expression of candidate genes was verified by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). In mulard ducks, spermatogonia and spermatocytes were arranged in a disordered manner, and no mature sperm were observed in the testis tissue. However, different stages of development of sperm were observed in seminiferous tubules in the testis tissue of Pekin ducks. A total of 43.84 Gb of clean reads were assembled into 193 535 UniGenes. Of these, 2131 transcripts exhibited differential expression (false discover rate <0.001 and fold change ≥2), including 997 upregulated and 1134 downregulated transcripts in mulard ducks as compared to those in Pekin duck testis tissues. Several upregulated genes were related to reproductive functions, including ryanodine receptor 2 (RYR2), calmodulin (CALM), argininosuccinate synthase and delta-1-pyrroline-5-carboxylate synthetase ALDH18A1 (P5CS). Downregulated transcripts included the testis-specific serine/threonine-protein kinase 3, aquaporin-7 (AQP7) and glycerol kinase GlpK (GK). The 10 related transcripts involved in the developmental biological process were identified by GO (Gene Ontology) annotation. The KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways indicated that peroxisome proliferator-activated receptors (PPARs) and calcium signaling pathways were significantly (P<0.001) associated with normal testis physiology. The differential expression of select genes implicated in reproductive processes was verified by qRT-PCR, which was consistent with the expression trend of transcriptome sequencing (RNA-seq). Differentially expressed candidate genes RYR2, CALM, P5CS, AQP7 and GK were identified by transcriptional analysis in mulard and Pekin duck testes. These were important for the normal development of the male duck reproductive system. These data provide a framework for the further exploration of the molecular and genetic mechanisms of sterility in mulard ducks. Highlights. The mulard duck is an intergeneric sterile hybrid offspring resulting from mating between Muscovy and Pekin ducks. The transcriptomes of testis tissue from mulard and Pekin ducks were systematically characterized, and differentially expressed genes were screened, in order to gain insights into potential gonad gene expression mechanisms contributing to genetic sterility in mulard ducks.


2021 ◽  
Author(s):  
Liyuan Liu ◽  
Shan Wu ◽  
Dan Jiang ◽  
Yuliang Qu ◽  
Hongxia Wang ◽  
...  

Abstract Background: Abnormal expression of Circular RNAs (circRNAs) occurs in the occurrence and progression of colorectal cancer (CRC) and plays an important role in the pathogenesis of tumors. We combined bioinformatics and laboratory-validated methods to search for key circRNAs and possible potential mechanisms. Methods: Colorectal cancer tissues and normal paracancerous tissues were detected by microarray analysis and qRT-PCR validation, and differentially expressed circRNAs were screened and identified. The circRNA-miRNA-mRNA regulatory network (cirReNET) was constructed, Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were used to ascertain the functions of circRNAs in CRCs. In addition, a protein-protein interaction (PPI) network of hub genes which acquired by string and plugin app CytoHubba in cytoscape was established. Validation of expression of hub genes was identified by GEPIA database. Results: 564 differentially expressed circRNAs which include 207 up-regulated and 357 down-regulated circRNAs were detected. The top 3 up-regulated circRNAs (hsa_circRNA_100833, hsa_circRNA_103828, hsa_circRNA_103831) and the top 3 down-regulated circRNAs (hsa_circRNA_103752, hsa_circRNA_071106, hsa_circRNA_102293) in chip analysis were chosen to be verified in 33 pairs of CRCs by qRT-PCR. The cirReNET include of 6 circRNAs, 19 miRNAs and 210 mRNA. And the targeted mRNAs were associated with cellular metabolic process, cell cycle and glandular epithelial cell differentiation and so on. 12 and 10 target hub genes were shown separately in upregulated circRNA-downregulated miRNA-upregulated mRNA (UcDiUm-RNA) group and downregulated circRNA-upregulated miRNA-downregulated mRNA (DcUiDm-RNA) group. Finally, we may have predicted and discovered several critical circRNA-miRNA-mRNA regulatory axes (cirReAXEs) which may play important roles in colorectal cancer. Conclusion: We constructed a cirReNET including 6 candidate circRNAs, which were crucial in CRCs, may become potential diagnostic markers and predictive indicators of CRCs, and we may provide a research direction for the pathogenesis of colorectal cancer.


Sign in / Sign up

Export Citation Format

Share Document