scholarly journals Mechanisms Governing Immunotherapy Resistance in Pancreatic Ductal Adenocarcinoma

2021 ◽  
Vol 11 ◽  
Author(s):  
Zoe C. Schmiechen ◽  
Ingunn M. Stromnes

Pancreatic ductal adenocarcinoma (PDA) is a lethal malignancy with an overall 5-year survival rate of 10%. Disease lethality is due to late diagnosis, early metastasis and resistance to therapy, including immunotherapy. PDA creates a robust fibroinflammatory tumor microenvironment that contributes to immunotherapy resistance. While previously considered an immune privileged site, evidence demonstrates that in some cases tumor antigen-specific T cells infiltrate and preferentially accumulate in PDA and are central to tumor cell clearance and long-term remission. Nonetheless, PDA can rapidly evade an adaptive immune response using a myriad of mechanisms. Mounting evidence indicates PDA interferes with T cell differentiation into potent cytolytic effector T cells via deficiencies in naive T cell priming, inducing T cell suppression or promoting T cell exhaustion. Mechanistic research indicates that immunotherapy combinations that change the suppressive tumor microenvironment while engaging antigen-specific T cells is required for treatment of advanced disease. This review focuses on recent advances in understanding mechanisms limiting T cell function and current strategies to overcome immunotherapy resistance in PDA.

Pathogens ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1027
Author(s):  
Nima Taefehshokr ◽  
Sina Taefehshokr ◽  
Bryan Heit

The current coronavirus disease 2019 (COVID-19) pandemic, a disease caused by severe acute respiratory syndrome corona virus 2 (SARS-CoV-2), was first identified in December 2019 in China, and has led to thousands of mortalities globally each day. While the innate immune response serves as the first line of defense, viral clearance requires activation of adaptive immunity, which employs B and T cells to provide sanitizing immunity. SARS-CoV-2 has a potent arsenal of mechanisms used to counter this adaptive immune response through processes, such as T cells depletion and T cell exhaustion. These phenomena are most often observed in severe SARS-CoV-2 patients, pointing towards a link between T cell function and disease severity. Moreover, neutralizing antibody titers and memory B cell responses may be short lived in many SARS-CoV-2 patients, potentially exposing these patients to re-infection. In this review, we discuss our current understanding of B and T cells immune responses and activity in SARS-CoV-2 pathogenesis.


2017 ◽  
Vol 35 (15_suppl) ◽  
pp. 3074-3074 ◽  
Author(s):  
Spencer Liang ◽  
Ofer Levy ◽  
Sudipto Ganguly ◽  
Maya Kotturi ◽  
Ilan Vaknin ◽  
...  

3074 Background: While inhibitors of CTLA4 and PD1 have emerged as effective cancer therapies, the majority of treated patients do not derive long term benefit. Employing our computational discovery platform, we discovered PVRIG as an immune suppressive molecule expressed on T and NK cells and identified COM701, an antibody (Ab) targeting human PVRIG that enhances T cell function and anti-tumor responses. Methods: Anti-human PVRIG Ab COM701 was identified as an antagonistic Ab that enhanced T cell function in multiple assays. Antagonistic anti-mouse PVRIG Abs and PVRIG deficient (PVRIG-/-) mice were generated and characterized using syngeneic tumor models. Results: PVRIG was induced upon T cell activation, with long term activation leading to the highest expression. PVRL2 was identified as the ligand for PVRIG, placing PVRIG in the DNAM/TIGIT immunoreceptor axis. Compared to normal adjacent tissues, PVRIG and PVRL2 were both induced in the tumor microenvironment of several human cancers. To target PVRIG for therapeutic intervention, we identified COM701, a high affinity Ab that disrupts the interaction of PVRIG with PVRL2. COM701 enhanced CD8 T cell proliferation and IFN-g production in vitro and had an additive or synergistic effect on T cell activation when further combined with an anti-PD1 or anti-TIGIT Ab. Consistent with a checkpoint function for human PVRIG, mouse PVRIG-/- T cells showed increased function compared to wild type T cells. A surrogate antagonistic anti-mPVRIG Ab reduced growth of CT26 and B16 tumors when combined with an anti-PDL1 Ab in vivo. MC38 tumors also grew slower in PVRIG-/- mice compared to wild type mice and ex vivo analysis pointed to functional differences in anti-cancer immunity. Conclusions: We demonstrated that targeting PVRIG with COM701, a high affinity antagonistic Ab, increased human T cell function. We further showed that PVRIG was induced in the tumor microenvironment and that disruption of PVRIG/PVRL2 interaction resulted in reduced tumor growth in preclinical models. These data demonstrate that PVRIG is a promising target for the treatment of cancer and provide the rationale for COM701 as a potential cancer immunotherapy.


Blood ◽  
2008 ◽  
Vol 112 (4) ◽  
pp. 1317-1324 ◽  
Author(s):  
Vincent Pitard ◽  
David Roumanes ◽  
Xavier Lafarge ◽  
Lionel Couzi ◽  
Isabelle Garrigue ◽  
...  

Abstract The ability of human γδ T cells to develop immunologic memory is still a matter of debate. We previously demonstrated the involvement of Vδ2− γδ T lymphocytes in the response of immunosuppressed organ recipients to cytomegalovirus (CMV). Here, we demonstrate their ability to mount an adaptive immune response to CMV in immunocompetent subjects. Vδ2− γδ T-cell peripheral blood numbers, repertoire restriction, and cytotoxicity against CMV-infected fibroblasts were markedly increased in CMV-seropositive, compared with CMV-seronegative, healthy persons. Whereas Vδ2− γδ T cells were found as naive cells in CMV− patients, they virtually all exhibited the cytotoxic effector/memory phenotype in CMV+ patients, which is also observed in transplanted patients challenged with CMV. This long-term complete remodeling of the Vδ2− γδ T-cell population by CMV predicts their ability to exhibit an adaptive anti-CMV immune response. Consistent with this, we observed that the secondary response to CMV was associated with a faster γδ T-cell expansion and a better resolution of infection than the primary response. In conclusion, the increased level of effector-memory Vδ2− γδ T cells in the peripheral blood is a specific signature of an adaptive immune response to CMV infection of both immunocompetent and immunosuppressed patients.


Cancers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2995
Author(s):  
Laia Gorchs ◽  
Helen Kaipe

Less than 10% of patients diagnosed with pancreatic ductal adenocarcinoma (PDAC) survive 5 years or more, making it one of the most fatal cancers. Accumulation of T cells in pancreatic tumors is associated with better prognosis, but immunotherapies to enhance the anti-tumor activity of infiltrating T cells are failing in this devastating disease. Pancreatic tumors are characterized by a desmoplastic stroma, which mainly consists of activated cancer-associated fibroblasts (CAFs). Pancreatic CAFs have emerged as important regulators of the tumor microenvironment by contributing to immune evasion through the release of chemokines, cytokines, and growth factors, which alters T-cell migration, differentiation and cytotoxic activity. However, recent discoveries have also revealed that subsets of CAFs with diverse functions can either restrain or promote tumor progression. Here, we discuss our current knowledge about the interactions between CAFs and T cells in PDAC and summarize different therapy strategies targeting the CAF–T cell axis with focus on CAF-derived soluble immunosuppressive factors and chemokines. Identifying the functions of different CAF subsets and understanding their roles in T-cell trafficking within the tumor may be fundamental for the development of an effective combinational treatment for PDAC.


2019 ◽  
Vol 116 (13) ◽  
pp. 5914-5919 ◽  
Author(s):  
Andreas Mayer ◽  
Yaojun Zhang ◽  
Alan S. Perelson ◽  
Ned S. Wingreen

An essential feature of the adaptive immune system is the proliferation of antigen-specific lymphocytes during an immune reaction to form a large pool of effector cells. This proliferation must be regulated to ensure an effective response to infection while avoiding immunopathology. Recent experiments in mice have demonstrated that the expansion of a specific clone of T cells in response to cognate antigen obeys a striking inverse power law with respect to the initial number of T cells. Here, we show that such a relationship arises naturally from a model in which T cell expansion is limited by decaying levels of presented antigen. The same model also accounts for the observed dependence of T cell expansion on affinity for antigen and on the kinetics of antigen administration. Extending the model to address expansion of multiple T cell clones competing for antigen, we find that higher-affinity clones can suppress the proliferation of lower-affinity clones, thereby promoting the specificity of the response. Using the model to derive optimal vaccination protocols, we find that exponentially increasing antigen doses can achieve a nearly optimized response. We thus conclude that the dynamics of presented antigen is a key regulator of both the size and specificity of the adaptive immune response.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 363-363 ◽  
Author(s):  
Tae Hae Han ◽  
Yucheng Tang ◽  
Yeon Hee Park ◽  
Jonathan Maynard ◽  
Pingchuan Li ◽  
...  

Abstract Individuals of advanced chronological age exhibit an impaired immune response to vaccines. This may be due to a reduction in the ratio of antigen naïve/memory CD4 and CD8 T cells and acquisition of functional defects in activated “helper” CD4 T cells (eg diminished CD40 ligand (CD40L) expression) during the aging process. The absence of the CD40L on activated CD4 helper T cells reduces the magnitude of expansion of antigen specific T and B cells induced by vaccination. In order to circumvent this defective response to vaccines among individuals in the fifth and sixth decades of life, our laboratory has developed an adenoviral vector (Ad-sig-TAA/ecdCD40L) vaccine which is designed to overcome the absence of CD40L expression in activated CD4 helper T cells in older individuals. The subcutaneous (sc) injection of this vector leads to the release of a fusion protein composed of a TAA linked to the extracellular domain (ecd) of the CD40L, which binds to the CD40 receptor on DCs, activates the DCs, and leads to the presentation of TAA fragments on Class I MHC. Two sc injections of the TAA/ecdCD40L protein as a booster following the sc administration of the Ad-sig-TAA/ecdCD40L vector (we call this the TAA/ecdCD40L VPP vaccine) expands the magnitude of the cellular and humoral immune response induced by the vector in 18 month old aged mice as well as in younger mice. In order to explore ways of further amplifying the immune response induced by this vaccine, we decided to test the feasibility of using this vaccine following treatments which reduce the number of T cells in the body of the test subject. We hypothesized that during states of chemotherapy or radiation induced lymphopenia, the number of negative regulatory CD4CD25FoxP3 T cells would be reduced, and all of the regulatory signals in the T cell compartment would be promoting expansion of T cells, thus creating an ideal state for vaccination. To test this hypothesis, we injected 100,000 cells from an established neoplastic cell line sc. Three days later, we administered myeloablative doses of total body irradiation (TBI) followed by a T cell depleted syngeneic bone marrow transplant (TCDBMT) to reconstitute neutrophil and platelet production. Three days following the TBI and TCDBMT, we intravenously infused donor lymphocytes (DLI) from a TAA/ ecdCD40L VPP vaccinated syngeneic donor. Four weeks later, we vaccinated the recipient mouse further with TAA/ecdCD40L sc injections. We tested this for a TAA composed of a junctional peptide from the p210Bcr-Abl protein of chronic myelogenous leukemia (CML) and for the E7 protein of the human papilloma virus (HPV). We found that in the case of the BcrAbl/ecdCD40L VPP vaccine, 50% of the mice treated with TBI, TCDBMT, ten million lymphocytes (DLI) from BcrAbl/ecdCD40L VPP vaccinated syngeneic donors followed in 4 weeks by 3 BcrAbl/ecdCD40L protein sc injections of the recipient test mouse, developed a complete response with the vaccination and that these mice remained disease free beyond 250 days after injection of the P210Bcr-Abl positive 32D leukemia cells, whereas C56BL/6J test mice treated with TBI and TCDBMT without DLI from vaccinated donors nor sc BcrAbl/ecdCD40L sc booster vaccination following injection with the p210Bcr-Abl positive 32D myeloid leukemia cell line all died by day 32. Mice treated with TBI, TCDBMT, DLI from unvaccinated donors followed by vaccination of the recipient with 3 sc BcrAbl/ecdCD40L protein injections exhibited a degree of leukemia suppression that was equal to mice receiving TBI, TCDBMT, DLI from a BcrAbl/ecdCD40L VPP vaccinated donor and BcrAbl/ecdCD40L vaccination. To test the effect of the TAA/ecdCD40L VPP vaccine against an antigen associated with an epithelial neoplasm, we injected 100,000 E7 positive TC-1 mouse cancer cells into syngeneic C57BL6J mice followed in 3–5 days by myeloablative doses of TBI and engrafting doses of TCDBMT. Three days later, the mice received 10 million spleen cells from syngeneic donor mice previously vaccinated with the E7/ecdCD40L VPP vaccine. Finally, 4 weeks later, the test mice received sc E7/ecdCD40L protein booster injections. The vaccinated mice achieved much greater degrees of tumor suppression than was seen following TBI and TCDBMT without DLI from vaccinated donors. These studies show that it is possible to induce a robust adaptive immune response by vaccination with the TAA/ecdCD40L VPP vaccine even in severely lymphopenic individuals.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3037-3037 ◽  
Author(s):  
Jakub Krejcik ◽  
Tineke Casneuf ◽  
Inger Nijhof ◽  
Bie Verbist ◽  
Jaime Bald ◽  
...  

Abstract Introduction: Daratumumab (DARA) is a novel human monoclonal antibody that targets CD38, a protein that is highly expressed on multiple myeloma (MM) cells. DARA acts through multiple immune effector-mediated mechanisms, including complement-dependent cytotoxicity, antibody-dependent cell-mediated cytotoxicity, and antibody-dependent cellular phagocytosis. In two clinical studies (NCT00574288 [GEN501] and NCT01985126 [Sirius]) of DARA monotherapy in patients with relapsed and refractory MM, overall response rates were 36% and 29%, respectively. CD38 is highly expressed in myeloma cells but also expressed in lymphocytes and other immune cell populations. Therefore, the effects of DARA on immune cell populations and adaptive immune response pathways were investigated. Methods: The patient population investigated included treated subjects with MM that were relapsed after or were refractory to ≥2 prior therapies (GEN501) or had received ≥3 prior therapies, including a proteasome inhibitor (PI) and an immunomodulatory drug (IMiD), or were refractory to both a PI and an IMiD (Sirius). Patients assessed in this analysis were treated with 16 mg/kg DARA. When both studies were combined, median age (range) was 64 (31-84) years and median time from diagnosis was 5.12 (0.77-23.77) years. Seventy-six percent of patients had received >3 prior therapies and 91% were refractory to their last treatment. Clinical response was evaluated using IMWG consensus recommendations. Peripheral blood (PB) samples and bone marrow (BM) biopsies/aspirates were taken at prespecified time points and immunophenotyped by flow cytometry to enumerate various T-cell sub-types. T-cell clonality was measured by TCR sequencing. Antiviral T-cell response and regulatory T-cell (Treg) activity were analysed by functional in vitro assays. T-cell subpopulation counts were modelled over time with linear mixed modelling. Two group comparisons were performed using non-parametric Wilcoxon rank sum tests. Results: Data from 148 patients receiving 16 mg/kg DARA in GEN501 (n = 42) and Sirius (n = 106) were analyzed for changes in immune response. In PB, robust mean increases in CD3+ (44%), CD4+ (32%) and CD8+ (62%) T-cell counts per 100 days were seen with DARA treatment. However, responding evaluable patients (n = 45) showed significantly greater increases from baseline than nonresponders (n = 93) in CD3+ (P = 0.00012), CD4+ (P = 0.00031), and CD8+ (P = 0.00018) T cells. In BM aspirates the number of CD3+, CD4+, and CD8+ T-cells increased during treatment compared to baseline (the median percent increases were 19.95%, 5.66%, and 26.99% [n = 58]). Additionally, CD8+: CD4+ T-cell ratios significantly increased compared to baseline in both PB (P = 0.00017), and BM (P = 0.00016). T cell clonality, assessed by TCR sequencing, increased after DARA treatment compared with pretreatment (P = 0.049), with greater sums of absolute expansion in the repertoire (P = 0.037), as well as greater maximum expansion of a single clone (P = 0.048) in responders compared to nonresponders. Increased antiviral T-cell responses were observed post-DARA treatment, particularly in responders. Interestingly, a novel subpopulation of regulatory T cells was identified that expressed high levels of CD38. These cells comprised ~10% of all Tregs and were depleted by one DARA infusion. In ex vivo analyses, CD38+ Tregs appeared to be highly immune suppressive compared to CD38-Tregs. Conclusions: Robust T cell increases, increased CD8+: CD4+ ratios, increased antiviral responses, and increased T cell clonality were all observed after DARA treatment in a heavily pretreated, relapsed, and refractory patient population not expected to have strong immune responses. Improved clinical responses were associated with changes in these parameters. In addition, a sub-population of regulatory T cells expressing high CD38 levels was determined to be extremely immune suppressive and sensitive to DARA treatment. These data suggest a previously unknown immune modulatory role of DARA that may contribute to its efficacy, and a potential role for CD38 immune targeted therapies. We postulate that there are several distinct and complementary mechanisms that contribute to DARA's efficacy including increased antigen presentation through phagocytosis, targeting of immune suppressive Tregs, and increased adaptive immune responses. JK and TC contributed equally to this work. Disclosures Casneuf: Janssen: Employment. Verbist:Janssen: Employment. Bald:Janssen: Employment. Plesner:Genmab: Membership on an entity's Board of Directors or advisory committees; Roche and Novartis: Research Funding; Janssen and Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding. Liu:Janssen: Employment. van de Donk:Janssen Pharmaceuticals: Research Funding; Amgen: Research Funding; Celgene: Research Funding. Weiss:Janssen and Onclave: Research Funding; Janssen and Millennium: Consultancy. Ahmadi:Janssen: Employment. Lokhorst:Genmab: Honoraria, Research Funding; Janssen: Honoraria, Research Funding; Amgen: Honoraria. Mutis:Janssen: Research Funding; Genmab: Research Funding.


2017 ◽  
Vol 91 (17) ◽  
Author(s):  
Christopher R. Lupfer ◽  
Kate L. Stokes ◽  
Teneema Kuriakose ◽  
Thirumala-Devi Kanneganti

ABSTRACT Pathogen recognition receptors are vital components of the immune system. Engagement of these receptors is important not only for instigation of innate immune responses to invading pathogens but also for initiating the adaptive immune response. Members of the NOD-like receptor (NLR) family of pathogen recognition receptors have important roles in orchestrating this response. The NLR family member NLRC5 regulates major histocompatibility complex class I (MHC-I) expression during various types of infections, but its role in immunity to influenza A virus (IAV) is not well studied. Here we show that Nlrc5 −/− mice exhibit an altered CD8+ T cell response during IAV infection compared to that of wild-type (WT) mice. Nlrc5 −/− mice have decreased MHC-I expression on hematopoietic cells and fewer CD8+ T cells prior to infection. NLRC5 deficiency does not affect the generation of antigen-specific CD8+ T cells following IAV infection; however, a change in epitope dominance is observed in Nlrc5 −/− mice. Moreover, IAV-specific CD8+ T cells from Nlrc5 −/− mice have impaired effector functions. This change in the adaptive immune response is associated with impaired viral clearance in Nlrc5 −/− mice. Collectively, our results demonstrate an important role for NLRC5 in regulation of antiviral immune responses and viral clearance during IAV infection. IMPORTANCE The NOD-like receptor family member NLRC5 is known to regulate expression of MHC-I as well as other genes required for antigen processing. In addition, NLRC5 also regulates various immune signaling pathways. In this study, we investigated the role of NLRC5 during influenza virus infection and found a major role for NLRC5 in restricting virus replication and promoting viral clearance. The observed increases in viral titers in NLRC5-deficient mice correlated with impaired effector CD8+ T cell responses. Although NLRC5-deficient mice were defective at clearing the virus, they did not show an increase in morbidity or mortality following influenza virus infection because of other compensatory immune mechanisms. Therefore, our study highlights how NLRC5 regulates multiple immune effector mechanisms to promote the host defense during influenza virus infection.


Sign in / Sign up

Export Citation Format

Share Document