scholarly journals Mini-Review: The Administration of Apoptotic Cells for Treating Rheumatoid Arthritis: Current Knowledge and Clinical Perspectives

2021 ◽  
Vol 12 ◽  
Author(s):  
Eric Toussirot ◽  
Francis Bonnefoy ◽  
Charline Vauchy ◽  
Sylvain Perruche ◽  
Philippe Saas

Rheumatoid arthritis (RA) is a chronic immune-mediated disease managed by conventional synthetic drugs, such as methotrexate (MTX), and targeted drugs including biological agents. Cell-based therapeutic approaches are currently developed in RA, mainly mesenchymal stroma cell-based approaches. Early-stage apoptotic cells possess direct and indirect anti-inflammatory properties. During the elimination of dying cells (a process called efferocytosis), specific mechanisms operate to control immune responses. There are compelling evidences in experimental models of arthritis indicating that apoptotic cell administration may benefit joint inflammation, and may even have therapeutic effects on arthritis. Additionally, it has been demonstrated that apoptotic cells could be administered with standard treatments of RA, such as MTX or TNF inhibitors (TNFi), given even a synergistic response with TNFi. Interestingly, apoptotic cell infusion has been successfully experienced to prevent acute graft-vs.-host disease after hematopoietic cell transplantation in patients with hematologic malignancies, with a good safety profile. In this mini-review, the apoptotic cell-based therapy development in arthritis is discussed, as well as its transfer in the short-term to an innovative treatment for patients with RA. The use of apoptotic cell-derived factors, including secretome or phosphatidylserine-containing liposomes, in RA are also discussed.

Pharmaceutics ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 474 ◽  
Author(s):  
Carl Randall Harrell ◽  
Nemanja Jovicic ◽  
Valentin Djonov ◽  
Vladislav Volarevic

Mesenchymal stem cells (MSC) are, due to their immunosuppressive and regenerative properties, used as new therapeutic agents in cell-based therapy of inflammatory and degenerative diseases. A large number of experimental and clinical studies revealed that most of MSC-mediated beneficial effects were attributed to the effects of MSC-sourced exosomes (MSC-Exos). MSC-Exos are nano-sized extracellular vesicles that contain MSC-derived bioactive molecules (messenger RNA (mRNA), microRNAs (miRNAs)), enzymes, cytokines, chemokines, and growth factors) that modulate phenotype, function and homing of immune cells, and regulate survival and proliferation of parenchymal cells. In this review article, we emphasized current knowledge about molecular and cellular mechanisms that were responsible for MSC-Exos-based beneficial effects in experimental models and clinical trials. Additionally, we elaborated on the challenges of conventional MSC-Exos administration and proposed the use of new bioengineering and cellular modification techniques which could enhance therapeutic effects of MSC-Exos in alleviation of inflammatory and degenerative diseases.


2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 1054.1-1054
Author(s):  
M. Schmeller ◽  
M. Diller ◽  
R. Hasseli ◽  
A. Knothe ◽  
S. Rehart ◽  
...  

Background:One of the key mechanisms in the pathogenesis of rheumatoid arthritis (RA) is the interaction of macrophages and synovial fibroblasts during joint inflammation. Increased synergistic proinflammatory activity of both cell types leads to the release of high levels of proinflammatory cytokines, especially of interleukin-6 (IL-6), and of matrix degrading enzymes. If this mechanism is uncontrolled, progressive destruction of articular cartilage and bone will take place.In active disease, immediate anti-inflammatory treatment with glucocorticoids is usually replaced by disease-modifying anti-rheumatic drugs (DMARDS), especially by methotrexate (MTX) and biologics such as TNF-α- or IL-6-inhibitors. This led to great improvements in prognosis and outcome for RA patients. However, about 40% of patients experience no remission or suffer from side effects of medication. To optimize established substances and to develop new treatment strategies, it is necessary to understand the mechanisms underlying the limited therapeutic effects.Objectives:Evaluation of the effect of prednisolone, MTX, adalimumab, tocilizumab on IL-6 secretion by RA synovial fibroblasts (RASF) and macrophages.Methods:RA synovium was used for RASF isolation. Peripheral blood mononuclear cells (PBMCs) were isolated from blood of healthy donors and RA patients by using Ficoll© medium followed by density gradient centrifugation. Mononuclear cells were seeded on six well plates (6x10^6/well) and incubated for one week. Then they were stimulated with Interferon-у (20 ng/ml) and LPS (50 ng/ml) for 48h to initiate differentiation into proinflammatory M1 macrophages. The M1 macrophages were co-cultured with RASF (100.000/well) and different treatments added (prednisolone: 10, 25, 50, 75, 100 nM, 1 µM; adalimumab: 100, 500 µg/ml; tocilizumab: 1, 5 µg/ml; MTX: 0,5, 1, 5, 10, 100 nM, 1µM). After 24h culture supernatants were collected and IL-6- and TNFα-ELISAs were performed.Results:IL-6 concentrations of untreated controls were comparable, regardless whether M1 macrophages from healthy donors or RA-patients were used for co-culture. Prednisolone reduced co-culture-induced IL-6 up to 56% (p<0.001) in co-culture of RASF and M1 macrophages of healthy donors and up to 60% (p<0.001) in co-culture of RASF and RA M1 macrophages. Adalimumab reduced IL-6 up to 28% (p<0.05) in M1 of healthy donors and up to 45% (p<0.01) in RA M1 macrophage co-cultures. A minor reduction by 10-20% of IL-6 was observed with tocilizumab and no significant effect could be achieved after treatment with MTX.Conclusion:Prednisolone and adalimumab clearly decrease but do not eliminate proinflammatory synergistic activity of RASF and M1 macrophages. These results confirm the clinical observation, that there is a large number of RA-patients that independent of anti-inflammatory treatment still suffer from low-level joint inflammation.The synergistic proinflammatory activity of M1 macrophages and RASF seems to be a complex and multifactorial mechanism that is difficult to eliminate by a single treatment substance. Since it is one of the key mechanisms in RA pathogenesis, there is a critical need to investigate how therapy effects could be optimized. This study confirmed RASFs as one of the leading effector cells of increased synergistic proinflammatory activity, thus underlining their promising role as a treatment target in rheumatoid arthritis.Disclosure of Interests:None declared


2010 ◽  
Vol 4 (1) ◽  
pp. 97-104 ◽  
Author(s):  
Olena Dotsenko

Regenerative cell based therapy has potential to become effective adjuvant treatment for patients with atherosclerotic disease. Although data from animal studies support this notion, clinical studies undertaken in patients with acute and chronic coronary artery disease do not conclusively demonstrate benefits of such therapy. There are many questions on the stem cell translational roadmap. The basic mechanisms of stem cell-dependent tissue regeneration are not well understood. There is a debate regarding characterization of specific cell types conferring therapeutic effects. In particular, the role of endothelial progenitor cells as a specific reparative cell subtype is questioned, and the role of myeloid cell linage in fostering of vasculo- and angiogenesis is being increasingly appreciated. Intense discussions surround the place of stem/progenitor cells in atherosclerosis progression, plaque destabilization and vessel remodeling. This paper summarizes the current knowledge on the regenerative stem/progenitor cell definitions, mechanisms of stem cell trafficking, homing and their involvement in atherosclerosis progression.


2017 ◽  
Vol 2017 ◽  
pp. 1-16 ◽  
Author(s):  
Celice C. Souza ◽  
Michelle Castro da Silva ◽  
Rosana Telma Lopes ◽  
Marcelo M. Cardoso ◽  
Lucas Lacerda de Souza ◽  
...  

We explored the comparative effects of minocycline treatment and intrastriatal BMMC transplantation after experimental striatal stroke in adult rats. Male Wistar adult rats were divided as follows: saline-treated (N=5), minocycline-treated (N=5), and BMMC-transplanted (N=5) animals. Animals received intrastriatal microinjections of 80 pmol of endothelin-1 (ET-1). Behavioral tests were performed at 1, 3, and 7 days postischemia. Animals were treated with minocycline (50 mg/kg, i.p.) or intrastriatal transplants of 106 BMMCs at 24 h postischemia. Animals were perfused at 7 days after ischemic induction. Coronal sections were stained with cresyl violet for gross histopathological analysis and immunolabeled for the identification of neuronal bodies (NeuN), activated microglia/macrophages (ED1), and apoptotic cells (active caspase-3). BMMC transplantation and minocycline reduced the number of ED1+ cells (p<0.05, ANOVA-Tukey), but BMMC afforded better results. Both treatments afforded comparable levels of neuronal preservation compared to control (p>0.05). BMMC transplantation induced a higher decrease in the number of apoptotic cells compared to control and minocycline treatment. Both therapeutic approaches improved functional recovery in ischemic animals. The results suggest that BMMC transplantation is more effective in modulating microglial activation and reducing apoptotic cell death than minocycline, although both treatments are equally efficacious on improving neuronal preservation.


2009 ◽  
Vol 390 (5/6) ◽  
Author(s):  
Andreas Weigert ◽  
Carla Jennewein ◽  
Bernhard Brüne

AbstractThe efficient execution of apoptotic cell death with the clearance of apoptotic debris by phagocytes is a key regulatory mechanism ensuring tissue homeostasis. Failure in this execution program contributes to the pathogenesis of many human diseases. In this review, we describe the current knowledge regarding the interaction of apoptotic cells with their professional ‘captors’, the macrophages, with special emphasis on the immunological outcome. Removal of apoptotic cells must be considered as a process that actively delivers signals to polarize macrophages, which are fundamental for the resolution of inflammation. However, the sculpting of macrophage responses by apoptotic cells can be misused under certain inflammatory disease conditions, including tumor development.


2021 ◽  
pp. 4-10
Author(s):  
Eliseo Ruiz Bedolla ◽  
Briceida Lopez Martinez ◽  
Israel Parra Ortega

Rheumatoid arthritis (RA) is the most common form of inammatory arthropathy sustained by autoimmune responses. This review has the objective of updating the knowledge about RA especially its molecular pathogenesis. We examine here the current knowledge of tryptophan, arginine, homoarginine and histidine metabolism and the main immunoregulatory pathways in amino acid catabolism in both RA patients and experimental models of arthritis. Of the characteristic autoantibodies of RA, those that appear earlier, are those that recognize cyclic citrullinated peptides. (CCP) and/or citrullinated brinogen. Therefore our analysis would indicate that amino acids metabolism represents a fruitful area of research for new drug targets for a more effective and safe therapy of RA.


Biomedicines ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 785
Author(s):  
Asma Abdullah Nurul ◽  
Maryam Azlan ◽  
Muhammad Rajaei Ahmad Mohd Zain ◽  
Alphy Alphonsa Sebastian ◽  
Ying Zhen Fan ◽  
...  

Osteoarthritis (OA) has traditionally been known as a “wear and tear” disease, which is mainly characterized by the degradation of articular cartilage and changes in the subchondral bone. Despite the fact that OA is often thought of as a degenerative disease, the catabolic products of the cartilage matrix often promote inflammation by activating immune cells. Current OA treatment focuses on symptomatic treatment, with a primary focus on pain management, which does not promote cartilage regeneration or attenuate joint inflammation. Since articular cartilage have no ability to regenerate, thus regeneration of the tissue is one of the key targets of modern treatments for OA. Cell-based therapies are among the new therapeutic strategies for OA. Mesenchymal stem cells (MSCs) have been extensively researched as potential therapeutic agents in cell-based therapy of OA due to their ability to differentiate into chondrocytes and their immunomodulatory properties that can facilitate cartilage repair and regeneration. In this review, we emphasized current knowledge and future perspectives on the use of MSCs by targeting their regeneration potential and immunomodulatory effects in the treatment of OA.


2021 ◽  
Vol 12 ◽  
Author(s):  
Irma Husain ◽  
Xunrong Luo

Despite significant advances in prevention and treatment of transplant rejection with immunosuppressive medications, we continue to face challenges of long-term graft survival, detrimental medication side effects to both the recipient and transplanted organ together with risks for opportunistic infections. Transplantation tolerance has so far only been achieved through hematopoietic chimerism, which carries with it a serious and life-threatening risk of graft versus host disease, along with variability in persistence of chimerism and uncertainty of sustained tolerance. More recently, numerous in vitro and in vivo studies have explored the therapeutic potential of silent clearance of apoptotic cells which have been well known to aid in maintaining peripheral tolerance to self. Apoptotic cells from a donor not only have the ability of down regulating the immune response, but also are a way of providing donor antigens to recipient antigen-presenting-cells that can then promote donor-specific peripheral tolerance. Herein, we review both laboratory and clinical evidence that support the utility of apoptotic cell-based therapies in prevention and treatment of graft versus host disease and transplant rejection along with induction of donor-specific tolerance in solid organ transplantation. We have highlighted the potential limitations and challenges of this apoptotic donor cell-based therapy together with ongoing advancements and attempts made to overcome them.


2017 ◽  
Vol Volume 12 ◽  
pp. 7015-7023 ◽  
Author(s):  
Hebatullah Helmy ◽  
Ayman El-Sahar ◽  
Rabab Sayed ◽  
Rehab Shamma ◽  
Alaa Salama ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document