scholarly journals Impact of Early Life Nutrition on Children’s Immune System and Noncommunicable Diseases Through Its Effects on the Bacterial Microbiome, Virome and Mycobiome

2021 ◽  
Vol 12 ◽  
Author(s):  
Paraskevi C. Fragkou ◽  
Dareilena Karaviti ◽  
Michael Zemlin ◽  
Chrysanthi Skevaki

The first 1000 days of life, including the intrauterine period, are regarded as a fundamental stepping stone for the development of a human. Unequivocally, nutrition during this period plays a key role on the proper development of a child, both directly through the intake of essential nutrients and indirectly by affecting the composition of the gut microbiota. The gut microbiota, including bacteria, viruses, fungi, protists and other microorganisms, is a highly modifiable and adaptive system that is influenced by diet, lifestyle, medicinal products and the environment. Reversely, it affects the immune system in multiple complex ways. Many noncommunicable diseases (NCDs) associated with dysbiosis are “programmed” during childhood. Nutrition is a potent determinant of the children’s microbiota composition and maturation and, therefore, a strong determinant of the NCDs’ programming. In this review we explore the interplay between nutrition during the first 1000 days of life, the gut microbiota, virome and mycobiome composition and the development of NCDs.

2020 ◽  
Vol 8 (10) ◽  
pp. 1573
Author(s):  
Hugo de Vries ◽  
Mirelle Geervliet ◽  
Christine A. Jansen ◽  
Victor P. M. G. Rutten ◽  
Hubèrt van Hees ◽  
...  

Piglets are susceptible to infections in early life and around weaning due to rapid environmental and dietary changes. A compelling target to improve pig health in early life is diet, as it constitutes a pivotal determinant of gut microbial colonization and maturation of the host’s immune system. In the present study, we investigated how supplementation of yeast-derived β-glucans affects the gut microbiota and immune function pre- and post-weaning, and how these complex systems develop over time. From day two after birth until two weeks after weaning, piglets received yeast-derived β-glucans or a control treatment orally and were subsequently vaccinated against Salmonella Typhimurium. Faeces, digesta, blood, and tissue samples were collected to study gut microbiota composition and immune function. Overall, yeast-derived β-glucans did not affect the vaccination response, and only modest effects on faecal microbiota composition and immune parameters were observed, primarily before weaning. This study demonstrates that the pre-weaning period offers a ‘window of opportunity’ to alter the gut microbiota and immune system through diet. However, the observed changes were modest, and any long-lasting effects of yeast-derived β-glucans remain to be elucidated.


PLoS ONE ◽  
2015 ◽  
Vol 10 (2) ◽  
pp. e0116523 ◽  
Author(s):  
Dirkjan Schokker ◽  
Jing Zhang ◽  
Stéphanie A. Vastenhouw ◽  
Hans G. H. J. Heilig ◽  
Hauke Smidt ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Martin Iain Bahl ◽  
Anabelle Legarth Honoré ◽  
Sanne Tygesen Skønager ◽  
Oliver Legarth Honoré ◽  
Tove Clausen ◽  
...  

AbstractOn many mink farms, antibiotics are used extensively during the lactation period to reduce the prevalence and severity of pre-weaning diarrhoea (PWD) in mink kits (also referred to as greasy kit syndrome). Concerns have been raised, that routine treatment of PWD with antibiotics could affect the natural successional development of the gut microbiota, which may have long lasting consequences. Here we investigated the effects of early life antibiotic treatment administered for 1 week (postnatal days 13–20). Two routes of antibiotic administration were compared to a non-treated control group (CTR, n = 24). Routes of administration included indirect treatment, through the milk from dams receiving antibiotics by intramuscular administration (ABX_D, n = 24) and direct treatment by intramuscular administration to the kits (ABX_K, n = 24). A tendency for slightly increased weight at termination (Day 205) was observed in the ABX_K group. The gut microbiota composition was profiled by 16S rRNA gene sequencing at eight time points between Day 7 and Day 205. A clear successional development of the gut microbiota composition was observed and both treatment regimens caused detectable changes in the gut microbiota until at least eight days after treatment ceased. At termination, a significant positive correlation was identified between microbial diversity and animal weight.


2019 ◽  
Vol 10 (2) ◽  
pp. 99-114
Author(s):  
Mihaela Jurdana ◽  
Darja Barlič-Maganja

Gut microbiota is the name given today to the bacterial population living in our intestine. It provides nutrients, metabolites and affects the immune system. Recent animals and human studies suggest that regular physical activity increases the presence of beneficial microbial species of gut microbiota and improves the health status of the host. When gut bacteria diversity reduces, there are systemic consequences leading to gastrointestinal, physiological and psychological distress. This review describes the communication pathway of the microbiota-gut-brain axes and other possible mechanisms by which physical activity causes changes in microbiota composition. Furthermore, it provides the latest evidence of the beneficial role of exercise, which in turn can affect health and various disease processes. The results of research studies in this area are increasingly becoming a focus of scientific attention.


2020 ◽  
Vol 21 (2) ◽  
pp. 503 ◽  
Author(s):  
Quanhang Xiang ◽  
Xiaoyu Wu ◽  
Ye Pan ◽  
Liu Wang ◽  
Chenbin Cui ◽  
...  

Previous studies have suggested that immune system development and weaning stress are closely related to the maturation of gut microbiota. The early-life period is a “window of opportunity” for microbial colonization, which potentially has a critical impact on the development of the immune system. Fecal microbiota transplantation (FMT) and probiotics are often used to regulate gut microbial colonization. This study aims to test whether early intervention with FMT using fecal microbiota from gestation sows combined with Clostridium butyricum and Saccharomyces boulardii (FMT-CS) administration could promote the maturation of gut microbiota and development of immune system in piglets. Piglets were assigned to control (n = 84) and FMT-CS treatment (n = 106), which were treated with placebo and bacterial suspension during the first three days after birth, respectively. By 16S rRNA gene sequencing, we found that FMT-CS increased the α-diversity and reduced the unweighted UniFrac distances of the OTU community. Besides, FMT-CS increased the relative abundance of beneficial bacteria, while decreasing that of opportunistic pathogens. FMT-CS also enhanced the relative abundance of genes related to cofactors and vitamin, energy, and amino acid metabolisms during the early-life period. ELISA analysis revealed that FMT-CS gave rise to the plasma concentrations of IL-23, IL-17, and IL-22, as well as the plasma levels of anti-M.hyo and anti-PCV2 antibodies. Furthermore, the FMT-CS-treated piglets showed decreases in inflammation levels and oxidative stress injury, and improvement of intestinal barrier function after weaning as well. Taken together, our results suggest that early-life intervention with FMT-CS could promote the development of innate and adaptive immune system and vaccine efficacy, and subsequently alleviate weaning stress through promoting the maturation of gut microbiota in piglets.


2019 ◽  
Vol 20 (3) ◽  
pp. 501 ◽  
Author(s):  
Rossella Cianci ◽  
Laura Franza ◽  
Giovanni Schinzari ◽  
Ernesto Rossi ◽  
Gianluca Ianiro ◽  
...  

The gut microbiota is central to the pathogenesis of several inflammatory and autoimmune diseases. While multiple mechanisms are involved, the immune system clearly plays a special role. Indeed, the breakdown of the physiological balance in gut microbial composition leads to dysbiosis, which is then able to enhance inflammation and to influence gene expression. At the same time, there is an intense cross-talk between the microbiota and the immunological niche in the intestinal mucosa. These interactions may pave the way to the development, growth and spreading of cancer, especially in the gastro-intestinal system. Here, we review the changes in microbiota composition, how they relate to the immunological imbalance, influencing the onset of different types of cancer and the impact of these mechanisms on the efficacy of traditional and upcoming cancer treatments.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Caroline Marcantonio Ferreira ◽  
Angélica Thomaz Vieira ◽  
Marco Aurelio Ramirez Vinolo ◽  
Fernando A. Oliveira ◽  
Rui Curi ◽  
...  

The commensal microbiota is in constant interaction with the immune system, teaching immune cells to respond to antigens. Studies in mice have demonstrated that manipulation of the intestinal microbiota alters host immune cell homeostasis. Additionally, metagenomic-sequencing analysis has revealed alterations in intestinal microbiota in patients suffering from inflammatory bowel disease, asthma, and obesity. Perturbations in the microbiota composition result in a deficient immune response and impaired tolerance to commensal microorganisms. Due to altered microbiota composition which is associated to some inflammatory diseases, several strategies, such as the administration of probiotics, diet, and antibiotic usage, have been utilized to prevent or ameliorate chronic inflammatory diseases. The purpose of this review is to present and discuss recent evidence showing that the gut microbiota controls immune system function and onset, development, and resolution of some common inflammatory diseases.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Gilliard Lach ◽  
Christine Fülling ◽  
Thomaz F. S. Bastiaanssen ◽  
Fiona Fouhy ◽  
Aoife N. O’ Donovan ◽  
...  

Abstract The gut microbiota is an essential regulator of many aspects of host physiology. Disruption of gut microbial communities affects gut-brain communication which ultimately can manifest as changes in brain function and behaviour. Transient changes in gut microbial composition can be induced by various intrinsic and extrinsic factors, however, it is possible that enduring shifts in the microbiota composition can be achieved by perturbation at a timepoint when the gut microbiota has not fully matured or is generally unstable, such as during early life or ageing. In this study, we investigated the effects of 3-week microbiota depletion with antibiotic treatment during the adolescent period and in adulthood. Following a washout period to restore the gut microbiota, behavioural and molecular hallmarks of gut-brain communication were investigated. Our data revealed that transient microbiota depletion had long-lasting effects on microbiota composition and increased anxiety-like behaviour in mice exposed to antibiotic treatment during adolescence but not in adulthood. Similarly, gene expression in the amygdala was more severely affected in mice treated during adolescence. Taken together these data highlight the vulnerability of the gut microbiota during the critical adolescent period and the long-lasting impact manipulations of the microbiota can have on gene expression and behaviour in adulthood.


2021 ◽  
Vol 9 (9) ◽  
pp. 1939
Author(s):  
Shaillay Kumar Dogra ◽  
Francois-Pierre Martin ◽  
Dominique Donnicola ◽  
Monique Julita ◽  
Bernard Berger ◽  
...  

(1) Background: Human milk oligosaccharides (HMOs) may support immune protection, partly via their action on the early-life gut microbiota. Exploratory findings of a randomized placebo-controlled trial associated 2′fucosyllactose (2′FL) and lacto-N-neotetraose (LNnT) formula feeding with reduced risk for reported bronchitis and lower respiratory tract illnesses (LRTI), as well as changes in gut microbiota composition. We sought to identify putative gut microbial mechanisms linked with these clinical observations. (2) Methods: We used stool microbiota composition, metabolites including organic acids and gut health markers in several machine-learning-based classification tools related prospectively to experiencing reported bronchitis or LRTI, as compared to no reported respiratory illness. We performed preclinical epithelial barrier function modelling to add mechanistic insight to these clinical observations. (3) Results: Among the main features discriminant for infants who did not experience any reported bronchitis (n = 80/106) or LRTI (n = 70/103) were the 2-HMO formula containing 2′FL and LNnT, higher acetate, fucosylated glycans and Bifidobacterium, as well as lower succinate, butyrate, propionate and 5-aminovalerate, along with Carnobacteriaceae members and Escherichia. Acetate correlated with several Bifidobacterium species. By univariate analysis, infants experiencing no bronchitis or LRTI, compared with those who did, showed higher acetate (p < 0.007) and B. longum subsp. infantis (p ≤ 0.03). In vitro experiments demonstrate that 2′FL, LNnT and lacto-N-tetraose (LNT) stimulated B. longum subsp. infantis (ATCC15697) metabolic activity. Metabolites in spent culture media, primarily due to acetate, supported epithelial barrier protection. (4) Conclusions: An early-life gut ecology characterized by Bifidobacterium-species-driven metabolic changes partly explains the observed clinical outcomes of reduced risk for bronchitis and LRTI in infants fed a formula with HMOs. (Trial registry number NCT01715246.)


Sign in / Sign up

Export Citation Format

Share Document