scholarly journals Autoimmune Epilepsy - Novel Multidisciplinary Analysis, Discoveries and Insights

2022 ◽  
Vol 12 ◽  
Author(s):  
Mia Levite ◽  
Hadassa Goldberg

Epilepsy affects ~50 million people. In ~30% of patients the etiology is unknown, and ~30% are unresponsive to anti-epileptic drugs. Intractable epilepsy often leads to multiple seizures daily or weekly, lasting for years, and accompanied by cognitive, behavioral, and psychiatric problems. This multidisciplinary scientific (not clinical) ‘Perspective’ article discusses Autoimmune Epilepsy from immunological, neurological and basic-science angles. The article includes summaries and novel discoveries, ideas, insights and recommendations. We summarize the characteristic features of the respective antigens, and the pathological activity in vitro and in animal models of autoimmune antibodies to: Glutamate/AMPA-GluR3, Glutamate/NMDA-NR1, Glutamate/NMDA-NR2, GAD-65, GABA-R, GLY-R, VGKC, LGI1, CASPR2, and β2 GP1, found in subpopulations of epilepsy patients. Glutamate receptor antibodies: AMPA-GluR3B peptide antibodies, seem so far as the most exclusive and pathogenic autoimmune antibodies in Autoimmune Epilepsy. They kill neural cells by three mechanisms: excitotoxicity, Reactive-Oxygen-Species, and complement-fixation, and induce and/or facilitate brain damage, seizures, and behavioral impairments. In this article we raise and discuss many more topics and new insights related to Autoimmune Epilepsy. 1. Few autoimmune antibodies tilt the balance between excitatory Glutamate and inhibitory GABA, thereby promoting neuropathology and epilepsy; 2. Many autoantigens are synaptic, and have extracellular domains. These features increase the likelihood of autoimmunity against them, and the ease with which autoimmune antibodies can reach and harm these self-proteins. 3. Several autoantigens have ‘frenetic character’- undergoing dynamic changes that can increase their antigenicity; 4. The mRNAs of the autoantigens are widely expressed in multiple organs outside the brain. If translated by default to proteins, broad spectrum detrimental autoimmunity is expected; 5. The autoimmunity can precede seizures, cause them, and be detrimental whether primary or epiphenomenon; 6. Some autoimmune antibodies induce, and associate with, cognitive, behavioral and psychiatric impairments; 7. There are evidences for epitope spreading in Autoimmune Epilepsy; 8. T cells have different ‘faces’ in the brain, and in Autoimmune Epilepsy: Normal T cells are needed for the healthy brain. Normal T cells are damaged by autoimmune antibodies to Glutamate/AMPA GluR3, which they express, and maybe by additional autoantibodies to: Dopamine-R, GABA-R, Ach-R, Serotonin-R, and Adrenergic-R, present in various neurological diseases (summarized herein), since T cells express all these Neurotransmitter receptors. However, autoimmune and/or cytotoxic T cells damage the brain; 9. The HLA molecules are important for normal brain function. The HLA haplotype can confer susceptibility or protection from Autoimmune Epilepsy; 10. There are several therapeutic strategies for Autoimmune Epilepsy.

2020 ◽  
Vol 29 ◽  
pp. 096368972094609
Author(s):  
Shino Ogawa ◽  
Mutsumi Hagiwara ◽  
Sachiyo Misumi ◽  
Naoki Tajiri ◽  
Takeshi Shimizu ◽  
...  

Preterm infants have a high risk of neonatal white matter injury (WMI) caused by hypoxia-ischemia. Cell-based therapies are promising strategies for neonatal WMI by providing trophic substances and replacing lost cells. Using a rat model of neonatal WMI in which oligodendrocyte progenitors (OPCs) are predominantly damaged, we investigated whether insulin-like growth factor 2 (IGF2) has trophic effects on OPCs in vitro and whether OPC transplantation has potential as a cell replacement therapy. Enhanced expression of Igf2 mRNA was first confirmed in the brain of P5 model rats by real-time polymerase chain reaction. Immunostaining for IGF2 and its receptor IGF2 R revealed that both proteins were co-expressed in OLIG2-positive and GFAP-positive cells in the corpus callosum (CC), indicating autocrine and paracrine effects of IGF2. To investigate the in vitro effect of IGF2 on OPCs, IGF2 (100 ng/ml) was added to the differentiation medium containing ciliary neurotrophic factor (10 ng/ml) and triiodothyronine (20 ng/ml), and IGF2 promoted the differentiation of OPCs into mature oligodendrocytes. We next transplanted rat-derived OPCs that express green fluorescent protein into the CC of neonatal WMI model rats without immunosuppression and investigated the survival of grafted cells for 8 weeks. Although many OPCs survived for at least 8 weeks, the number of mature oligodendrocytes was unexpectedly small in the CC of the model compared with that in the sham-operated control. These findings suggest that the mechanism in the brain that inhibits differentiation should be solved in cell replacement therapy for neonatal WMI as same as trophic support from IGF2.


BMC Neurology ◽  
2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Zuzana Liba ◽  
Martina Vaskova ◽  
Josef Zamecnik ◽  
Jana Kayserova ◽  
Hana Nohejlova ◽  
...  

Abstract Background Immune-mediated mechanisms substantially contribute to the Rasmussen encephalitis (RE) pathology, but for unknown reasons, immunotherapy is generally ineffective in patients who have already developed intractable epilepsy; overall laboratory data regarding the effect of immunotherapy on patients with RE are limited. We analyzed multiple samples from seven differently treated children with RE and evaluated the effects of immunotherapies on neuroinflammation. Immunotherapy was introduced to all patients at the time of intractable epilepsy and they all had to undergo hemispherothomy. Methods Immunohistochemistry, flow cytometry, Luminex multiplex bead and enzyme-linked immunosorbent assay techniques were combined to determine: 1) inflammatory changes and lymphocyte subpopulations in 45 brain tissues; 2) lymphocyte subpopulations and the levels of 12 chemokines/cytokines in 24 cerebrospinal fluid (CSF) samples and 30 blood samples; and 3) the dynamics of these parameters in four RE patients from whom multiple samples were collected. Results Sustained T cell-targeted therapy with cyclophosphamide, natalizumab, alemtuzumab, and intrathecal methotrexate (ITMTX), but not with azathioprine, substantially reduced inflammation in brain tissues. Despite the therapy, the distributions of CD8+ T cells and the levels of C-X-C motif ligand (CXCL) 10, CXCL13, and B cell activating factor (BAFF) in patients’ CSF remained increased compared to controls. A therapeutic approach combining alemtuzumab and ITMTX was the most effective in producing simultaneous reductions in histopathological inflammatory findings and in the numbers of activated CD8+ T cells in the brain tissue, as well as in the overall CD8+ T cell population and chemokine/cytokine production in the CSF. Conclusions We provide evidence that various T cell-targeted immunotherapies reduced inflammation in the brains of RE patients. The observation that intractable epilepsy persisted in all of the patients suggests a relative independence of seizure activity on the presence of T cells in the brain later in the disease course. Thus, new therapeutic targets must be identified. CXCL10, CXCL13 and BAFF levels were substantially increased in CSF from all patients and their significance in RE pathology remains to be addressed.


1987 ◽  
Vol 24 (5) ◽  
pp. 404-410 ◽  
Author(s):  
A. S. Waldvogel ◽  
C. A. Anderson ◽  
R. J. Higgins ◽  
B. I. Osburn

In vivo and in vitro experiments were done to investigate whether the difference in neurovirulence between the two strains of bluetongue virus 11, UC-2 and UC-8, is based on a different capability to gain access to the brain from the subcutaneous inoculation site or on a different tropism for neural cells. In newborn Balb/c mice subcutaneous inoculation of UC-8 at doses between 10−0.2 plaque forming units (PFU) and 104.8 PFU caused a severe necrotizing encephalitis whereas UC-2 at doses of up to 104.4 PFU did not affect newborn Balb/c mice. However, intracranial inoculation of 102.4 PFU of either virus strain produced severe necrotizing encephalitis. In vitro both virus strains infected dissociated brain cell cultures similarly. Double labelling immunofluorescent staining with markers specific for neural cells did not reveal differences in the target cells for the two viruses. The difference in neurovirulence between UC-2 and UC-8, therefore, appears to be determined by the ability of UC-8 to infect the brain from a subcutaneous inoculation site.


Author(s):  
Paolo Mannella ◽  
Tommaso Simoncini ◽  
Andrea Riccardo Genazzani

AbstractSex steroids are known to regulate brain function and their role is so important that several diseases are strictly correlated with the onset of menopause when estrogen-progesterone deficiency makes neural cells much more vulnerable to toxic stimuli. Although in the past years several scientists have focused their studies on in vitro and in vivo effects of sex steroids on the brain, we are still far from complete knowledge. Indeed, contrasting results from large clinical trials have made the entire issue much more complicated. Currently we know that protective effects exerted by sex steroids depend on several factors among which the dose, the health of the cells and the type of molecule being used. In this review, we present an overview of the direct and indirect effects of estrogen and progesterone on the brain with specific focus on the molecular mechanisms by which these molecules act on neural cells.


2007 ◽  
Vol 38 (3) ◽  
pp. 355-363 ◽  
Author(s):  
Céline Callewaere ◽  
Ghazal Banisadr ◽  
William Rostène ◽  
Stéphane Mélik Parsadaniantz

Chemokines are small secreted proteins that chemoattract and activate immune and non-immune cells both in vivo and in vitro. In addition to their well-established role in the immune system, several recent reports have suggested that chemokines and their receptors may also play a role in the central nervous system (CNS). The best known central action is their ability to act as immunoinflammatory mediators. Indeed, these proteins regulate leukocyte infiltration in the brain during inflammatory and infectious diseases. However, we and others recently demonstrated that they are expressed not only in neuroinflammatory conditions, but also constitutively by different cell types including neurons in the normal brain, suggesting that they may act as modulators of neuronal functions. The goal of this review is to highlight the role of chemokines in the control of neuroendocrine functions. First, we will focus on the expression of chemokines and their receptors in the CNS, with the main spotlight on the neuronal expression in the hypothalamo–pituitary system. Secondly, we will discuss the role – we can now suspect – of chemokines and their receptors in the regulation of neuroendocrine functions. In conclusion, we propose that chemokines can be added to the well-described neuroendocrine regulatory mechanisms, providing an additional fine modulatory tuning system in physiological conditions.


2001 ◽  
Vol 75 (5) ◽  
pp. 2107-2118 ◽  
Author(s):  
Ting Liu ◽  
Thomas J. Chambers

ABSTRACT Viral encephalitis caused by neuroadapted yellow fever 17D virus (PYF) was studied in parental and gamma interferon (IFN-γ)-deficient (IFN-γ knockout [GKO]) C57BL/6 mice. The T-cell responses which enter the brain during acute fatal encephalitis of nonimmunized mice, as well as nonfatal encephalitis of immunized mice, were characterized for relative proportions of CD4+ and CD8+cells, their proliferative responses, and antigen-specific expression of cytokines during stimulation in vitro. Unimmunized mice accumulated only low levels of T cells within the brain during fatal disease, whereas the brains of immunized mice contained higher levels of both T-cell subsets in response to challenge, with CD8+ cells increased relative to the CD4+ subset. The presence of T cells correlated with the time at which virus was cleared from the central nervous system in both parental and GKO mice. Lymphocytes isolated from the brains of challenged immunized mice failed to proliferate in vitro in response to T-cell mitogens or viral antigens; however, IFN-γ, interleukin 4 (IL-4), and, to a lesser extent, IL-2 were detectable after stimulation. The levels of IFN-γ, but not IL-2 or IL-4, were augmented in response to viral antigen, and this specificity was detectable in the CD4+ compartment. When tested for the ability to survive both immunization and challenge with PYF virus, GKO and CD8 knockout mice did not differ from parental mice (80 to 85% survival), although GKO mice exhibited a defect in virus clearance. In contrast, CD4 knockout and Igh-6 mice were unable to resist challenge. The data implicate antibody in conjunction with CD4+ lymphocytes bearing a Th1 phenotype as the critical factors involved in virus clearance in this model.


2014 ◽  
Vol 2014 ◽  
pp. 1-14
Author(s):  
Valentin P. Shichkin ◽  
Roman M. Moriev

Previously, the mouse A20 B-cell lymphoma engineered to express hemagglutinin (HA) antigen (A20HA) was used as a systemic tumor model. In this work, we used the A20HA cells as a brain tumor. HA-specific CD4+T cells were transferred intravenously in a tail vein 5 days after A20HA intracranial inoculation and analyzed on days 2, 9, and 16 after the adoptive transfer by different methods. The transferred cells demonstrated state of activation as early as day 2 after the adoptive transfer and most the of viable HA-specific cells became anergic on day 16. Additionally, symptoms of systemic immunosuppression were observed in mice with massive brain tumors at a late stage of the brain tumor progression (days 20–24 after the A20HA inoculation). Despite that, a deal of HA-specific CD4+T cells kept the functional activity even at the late stage of A20HA tumor growth. The activated HA-specific CD4+T cells were found also in the brain of brain-tumor-bearing mice. These cells were still responding to reactivation with HA-peptidein vitro. Our data support an idea about sufficient role of both the tumor-specific and -nonspecific mechanisms inducing immunosuppression in cancer patients.


2006 ◽  
Vol 81 (3) ◽  
pp. 1492-1501 ◽  
Author(s):  
Edward Acheampong ◽  
Zahida Parveen ◽  
Aschalew Mengistu ◽  
Noel Ngoubilly ◽  
Brian Wigdahl ◽  
...  

ABSTRACT The majority of human immunodeficiency virus type 1 (HIV-1)-infected individuals are either alcoholics or prone to alcoholism. Upon ingestion, alcohol is easily distributed into the various compartments of the body, particularly the brain, by crossing through the blood-brain barrier. Both HIV-1 and alcohol induce oxidative stress, which is considered a precursor for cytotoxic responses. Several reports have suggested that statins exert antioxidant as well as anti-inflammatory pleiotropic effects, besides their inherent cholesterol-depleting potentials. In our studies, postmitotically differentiated neurons were cocultured with HIV-1-infected monocytes, T cells, or their cellular supernatants in the presence of physiological concentrations of alcohol for 72 h. Parallel cultures were pretreated with statins (atorvastatin and simvastatin) with the appropriate controls, i.e., postmitotically differentiated neurons cocultured with uninfected cells and similar cultures treated with alcohol. The oxidative stress responses in the presence/absence of alcohol in these cultures were determined by the production of the well-characterized oxidative stress markers, 8-isoprostane-F2-α, total nitrates as an indicator for various isoforms of nitric oxide synthase activity, and heat shock protein 70 (Hsp70). An in vitro culture of postmitotically differentiated neurons with HIV-1-infected monocytes or T cells as well as supernatants from these cells enhanced the release of 8-isoprostane-F2-α in the conditioned medium six- to sevenfold (monocytes) and four- to fivefold (T cells). It was also observed that coculturing of HIV-1-infected primary monocytes over a time period of 72 h significantly elevated the release of Hsp70 compared with that of uninfected controls. Cellular supernatants of HIV-1-infected monocytes or T cells slightly increased Hsp70 levels compared to neurons cultured with uninfected monocytes or T-cell supernatants (controls). Ethanol (EtOH) presence further elevated Hsp70 in both infected and uninfected cultures. The amount of total nitrates was significantly elevated in the coculture system when both infected cells and EtOH were present. Surprisingly, pretreatment of postmitotic neurons with clinically available inhibitors of HMG-coenzyme A reductase (statins) inhibited HIV-1-induced release of stress/toxicity-associated parameters, i.e., Hsp70, isoprostanes, and total nitrates from HIV-1-infected cells. The results of this study provide new insights into HIV-1 neuropathogenesis aimed at the development of future HIV-1 therapeutics to eradicate viral reservoirs from the brain.


2021 ◽  
Vol 12 ◽  
Author(s):  
Natalia Kunz ◽  
Claudia Kemper

The classical liver-derived and serum-effective complement system is well appreciated as a key mediator of host protection via instruction of innate and adaptive immunity. However, recent studies have discovered an intracellularly active complement system, the complosome, which has emerged as a central regulator of the core metabolic pathways fueling human immune cell activity. Induction of expression of components of the complosome, particularly complement component C3, during transmigration from the circulation into peripheral tissues is a defining characteristic of monocytes and T cells in tissues. Intracellular complement activity is required to induce metabolic reprogramming of immune cells, including increased glycolytic flux and OXPHOS, which drive the production of the pro-inflammatory cytokine IFN-γ. Consequently, reduced complosome activity translates into defects in normal monocyte activation, faulty Th1 and cytotoxic T lymphocyte responses and loss of protective tissue immunity. Intriguingly, neurological research has identified an unexpected connection between the physiological presence of innate and adaptive immune cells and certain cytokines, including IFN-γ, in and around the brain and normal brain function. In this opinion piece, we will first review the current state of research regarding complement driven metabolic reprogramming in the context of immune cell tissue entry and residency. We will then discuss how published work on the role of IFN-γ and T cells in the brain support a hypothesis that an evolutionarily conserved cooperation between the complosome, cell metabolism and IFN-γ regulates organismal behavior, as well as immunity.


Author(s):  
Laura N. Zamproni ◽  
Mayara T. V. V. Mundim ◽  
Marimelia A. Porcionatto

Graphical AbstractBioscaffolds potential applications in tissue engineering. Bioscaffolds can be used to grow stem cells and target their differentiation in vitro(upper, left) or be used as stem cell delivery route in a brain injury (upper, right). Bioscaffolds can also contain si/miRNAs that will modify locally neural cells gene expression (lower, left) or contain exosomes/growth factors for paracrine signaling such as stimulating neurogenesis and increase neural stem migration to injury area (lower, right). This cover has been designed using resources created by Vitaly Gorbachev from Flaticon.com.


Sign in / Sign up

Export Citation Format

Share Document