scholarly journals Engineering, Characterization, and Biological Evaluation of an Antibody Targeting the HGF Receptor

2021 ◽  
Vol 12 ◽  
Author(s):  
Claudia Desole ◽  
Simona Gallo ◽  
Annapia Vitacolonna ◽  
Elisa Vigna ◽  
Cristina Basilico ◽  
...  

The Hepatocyte growth factor (HGF) and its receptor (MET) promote several physiological activities such as tissue regeneration and protection from cell injury of epithelial, endothelial, neuronal and muscle cells. The therapeutic potential of MET activation has been scrutinized in the treatment of acute tissue injury, chronic inflammation, such as renal fibrosis and multiple sclerosis (MS), cardiovascular and neurodegenerative diseases. On the other hand, the HGF-MET signaling pathway may be caught by cancer cells and turned to work for invasion, metastasis, and drug resistance in the tumor microenvironment. Here, we engineered a recombinant antibody (RDO24) and two derived fragments, binding the extracellular domain (ECD) of the MET protein. The antibody binds with high affinity (8 nM) to MET ECD and does not cross-react with the closely related receptors RON nor with Semaphorin 4D. Deletion mapping studies and computational modeling show that RDO24 binds to the structure bent on the Plexin-Semaphorin-Integrin (PSI) domain, implicating the PSI domain in its binding to MET. The intact RDO24 antibody and the bivalent Fab2, but not the monovalent Fab induce MET auto-phosphorylation, mimicking the mechanism of action of HGF that activates the receptor by dimerization. Accordingly, the bivalent recombinant molecules induce HGF biological responses, such as cell migration and wound healing, behaving as MET agonists of therapeutic interest in regenerative medicine. In vivo administration of RDO24 in the murine model of MS, represented by experimental autoimmune encephalomyelitis (EAE), delays the EAE onset, mitigates the early clinical symptoms, and reduces inflammatory infiltrates. Altogether, these results suggest that engineered RDO24 antibody may be beneficial in multiple sclerosis and possibly other types of inflammatory disorders.

2021 ◽  
Author(s):  
Mei-Li Mo ◽  
Jin-Mei Jiang ◽  
Xiao-Ping Long ◽  
Li-Hu Xie

Abstract Objectives Present study aimed to illustrate the role of miR-144-3p in RA. Methods N1511 chondrocytes were stimulated by IL-1β to mimic RA injury model in vitro. Rats were subjected to injection of type II collagen to establish an in vivo RA model and the arthritis index score was calculated. Cell viability was determined by CCK-8. The expression of cartilage extracellular matrix proteins (Collagen II and Aggrecan) and matrix metalloproteinases protein (MMP-13) were determined by qRT-PCR and western blots. Cell apoptosis was measured by Flow cytometry. ELISA was applied to test the secretion of pro-inflammatory cytokines (IL-1β and TNF-α). Tissue injury and apoptosis were detected by HE staining and TUNEL staining. Interaction of miR-144-3p and BMP2 was verified by dual luciferase assay. Results MiR-144-3p was dramatically increased in IL-1β induced N1511 cells. MiR-144-3p depletion elevated cell viability, suppressed apoptosis, pro-inflammatory cytokine releasing, and extracellular matrix loss in IL-1β induced N1511 cells. Moreover, miR-144-3p targeted BMP2 to modulate its expression negatively. Activation of PI3K/Akt signaling compromised inhibition of BMP2 induced aggravated N1511 cell injury with IL-1β stimulation. Inhibition of miR-144-3p alleviated cartilage injury and inflammatory in RA rats. Conclusion Collectively, miR-144-3p could aggravate chondrocytes injury inflammatory response in RA via BMP2/PI3K/Akt axis.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Alessio Cardinale ◽  
Silvia Biocca

Prion diseases or transmissible spongiform encephalopathies (TSE) are a group of neurodegenerative and infectious disorders characterized by the conversion of a normal cellular protein PrPCinto a pathological abnormally folded form, termed PrPSc. There are neither available therapies nor diagnostic tools for an early identification of individuals affected by these diseases. New gene-based antibody strategies are emerging as valuable therapeutic tools. Among these, intrabodies are chimeric molecules composed by recombinant antibody fragments fused to intracellular trafficking sequences, aimed at inhibiting,in vivo, the function of specific therapeutic targets. The advantage of intrabodies is that they can be selected against a precise epitope of target proteins, including protein-protein interaction sites and cytotoxic conformers (i.e., oligomeric and fibrillar assemblies). Herein, we address and discussin vitroandin vivoapplications of intrabodies in prion diseases, focussing on their therapeutic potential.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Bogdan Andor ◽  
Corina Danciu ◽  
Ersilia Alexa ◽  
Istvan Zupko ◽  
Elena Hogea ◽  
...  

In recent years, nutraceuticals attracted a great amount of attention in the biomedical research due to their significant contribution as natural agents for prevention of various health issues. Ethanolic extracts from the ungerminated and germinated seeds ofLupinus albusL. andLupinus angustifoliusL. were analyzed for the content in isoflavones (genistein) and cinnamic acid derivatives. Additionally, the extracts were evaluated for antimicrobial, antiproliferative, and anti-inflammatory properties, using in vitro and in vivo tests. Germination proved to be a method of choice in increasing the amount of genistein and cinnamic acid derivatives in bothLupinus albusL. andLupinus angustifolius L.seeds. Biological evaluation of all vegetal extracts revealed a weak therapeutic potential for both ungerminated and germinated seeds.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Myeong A Choi ◽  
Sun You Park ◽  
Hye Yun Chae ◽  
Yoojin Song ◽  
Chiranjeev Sharma ◽  
...  

Abstract To develop novel CNS penetrant HDAC inhibitors, a new series of HDAC inhibitors having benzoheterocycle were designed, synthesized, and biologically evaluated. Among the synthesized compounds, benzothiazole derivative 9b exhibited a remarkable anti-proliferative activity (GI50 = 2.01 μM) against SH-SY5Y cancer cell line in a dose and time-dependent manner, better than the reference drug SAHA (GI50 = 2.90 μM). Moreover, compound 9b effectively promoted the accumulation of acetylated Histone H3 and α-tubulin through inhibition of HDAC1 and HDAC6 enzymes, respectively. HDAC enzyme assay also confirmed that compound 9b efficiently inhibited HDAC1 and HDAC6 isoforms with IC50 values of 84.9 nM and 95.9 nM. Furthermore, compound 9b inhibited colony formation capacity of SH-SY5Y cells, which is considered a hallmark of cell carcinogenesis and metastatic potential. The theoretical prediction, in vitro PAMPA-BBB assay, and in vivo brain pharmacokinetic studies confirmed that compound 9b had much higher BBB permeability than SAHA. In silico docking study demonstrated that compound 9b fitted in the substrate binding pocket of HDAC1 and HDAC6. Taken together, compound 9b provided a novel scaffold for developing CNS penetrant HDAC inhibitors and therapeutic potential for CNS-related diseases.


1998 ◽  
Vol 36 (11) ◽  
pp. 3198-3204 ◽  
Author(s):  
Alessandro De Logu ◽  
R. Anthony Williamson ◽  
Roman Rozenshteyn ◽  
Fernando Ramiro-Ibañez ◽  
Cindy D. Simpson ◽  
...  

We report the characterization of a type-common human recombinant monoclonal antibody previously isolated by antigen selection from a phage-displayed combinatorial antibody library established from a herpes simplex virus (HSV)-seropositive individual. Competition with well-characterized murine monoclonal antibodies and immunodetection of gD truncations revealed that this antibody recognizes the group Ib antigenic site of glycoprotein D, a highly conserved and protective type-common determinant. To our knowledge, this is the first human group Ib monoclonal antibody ever described. The antibody also displayed first-order neutralization kinetics and a high neutralization rate constant, was capable of completely inhibiting syncytium formation by a fusogenic strain of HSV type 1, and efficiently neutralized low-passage clinical isolates of both HSV serotypes. Taken together with our earlier observations of the in vivo antiviral activities of this human recombinant antibody in animal models of HSV infection, the present results support the high therapeutic potential of this antibody.


2020 ◽  
pp. 135245852095858
Author(s):  
Alberto Calvi ◽  
Lukas Haider ◽  
Ferran Prados ◽  
Carmen Tur ◽  
Declan Chard ◽  
...  

New clinical activity in multiple sclerosis (MS) is often accompanied by acute inflammation which subsides. However, there is growing evidence that a substantial proportion of lesions remain active well beyond the acute phase. Chronic active lesions are most frequently found in progressive MS and are characterised by a border of inflammation associated with iron-enriched cells, leading to ongoing tissue injury. Identifying imaging markers for chronic active lesions in vivo are thus a major research goal. We reviewed the literature on imaging of chronic active lesion in MS, focussing on ‘slowly expanding lesions’ (SELs), detected by volumetric longitudinal magnetic resonance imaging (MRI) and ‘rim-positive’ lesions, identified by susceptibility iron-sensitive MRI. Both SELs and rim-positive lesions have been found to be prognostically relevant to future disability. Little is known about the co-occurrence of rims around SELs and their inter-relationship with other emerging techniques such as dynamic contrast enhancement (DCE) and positron emission tomography (PET).


2021 ◽  
Author(s):  
hairul islam Mohamed ibrahim ◽  
abdullah ◽  
hamza hanieh ◽  
emad a ahmed ◽  
k thirugnansambantham

Abstract The short non-coding microRNAs (miRNAs), have emerged as reliable modulators of various pathological conditions including autoimmune diseases in mammals. The current study, aims to identify new potential differential expressed miRNAs and their downstream mRNA targets of the autoimmune disease, Multiple sclerosis (MS). First, we used a computational tool to identify a new set of miRNA(s) that are probably implicated in MS. Preliminary, computational screening reveals that miR-659-3p, miR-659-5p, miR- 684, miR-3607-3p, miR-3607-5p, miR-3682-3p, miR-3682-5p miR-4647, miR-7188-3p, miR-7188-5p and miR-7235 are specifically elevated in the secondary lymphoid cells of EAE mice. In addition, expression of the downstream target genes of these miRNAs such as FXBO33, SGMS-1, ZDHHC-9, GABRA-3, NRXN-2 were reciprocal to miRNA expression in lymphoid cells. These confirmed by applying the mimic and silencing miRNA models, these data suggesting new inflammatory target genes of these promising miRNA biomarkers. The in vivo adoptive transfer model revealed that the suppression of miRNA-7188-5p and miR-7235 changed the pattern of astrocytes and CNSpathophysiology. The current study identified set of miRNAs and their mRNA targets as reciprocal regulator in MS disease. The absence of miRNA-7188-5p and miR-7235 enhanced the disease alleviation. These optimized results highlight new set of miRNA’s based biomarkers with therapeutic potential in experimental MS.


2012 ◽  
Vol 18 (3) ◽  
pp. 258-263 ◽  
Author(s):  
M Kipp ◽  
S Amor

FTY720 (fingolimod; Gilenya®), a sphingosine 1-phosphate (S1P) receptor modulator, is the first oral disease-modifying therapy to be approved for the treatment of relapsing–remitting multiple sclerosis. FTY720 is rapidly converted in vivo to the active S-fingolimod-phosphate, which binds to S1P receptors. This action inhibits egress of lymphocytes from the lymph nodes, preventing entry into the blood and thus infiltration into the central nervous system. More recent studies, however, convincingly show that FTY720 crosses the blood–brain barrier, where it is thought to act on S1P receptors on cells within the central nervous system, such as astrocytes, oligodendrocytes or microglia. Here we discuss the evidence showing that FTY720 also plays a role in remyelination and repair within the brain. While the mechanisms of action still require firm elucidation, it is clear that FTY720 could also be reparative, extending its therapeutic potential for multiple sclerosis.


2021 ◽  
Author(s):  
Chandran Remya ◽  
K.V. Dileep ◽  
Eeda Koti Reddy ◽  
Kumar Mantosh ◽  
Kesavan Lakshmi ◽  
...  

AbstractThe complex and multifactorial nature of neuropsychiatric diseases demands multi-target drugs that can intervene with various sub-pathologies underlying disease progression. Targeting the impairments in cholinergic and glutamatergic neurotransmissions with small molecules has been suggested as one of the potential disease-modifying approaches for Alzheimer’s disease (AD). Tacrine, apotent inhibitor of acetylcholinesterase (AChE) is the first FDA approved drug for the treatment of AD. Tacrine is also a low affinity antagonist of N-methyl-D-aspartate receptor (NMDAR). However, tacrine was withdrawn from its clinical use later due to its hepato-toxicity. With an aim to develop novel high affinity multi-target directed ligands (MTDLs) against AChE and NMDAR, with reduced hepatotoxicity, we performed in silico structure-based modifications on tacrine, chemical synthesis of the derivatives and in vitro validation of their activities. Nineteen such derivatives showed inhibition with IC50 values in the range of 18.53±2.09 to 184.09±19.23 nM against AChE and 0.27±0.05 to 38.84±9.64 μM against NMDAR. Some of the selected compounds also protected rat primary cortical neurons from glutamate induced excitotoxicity. Two of the tacrine derived MTDLs, 201 and 208 exhibited in vivo efficacy in rats by protecting against behavioral impairment induced by administration of the excitotoxic agent, monosodium glutamate. Additionally, several of these synthesized compounds also exhibited promising inhibitory activities against butyrylcholinesterase and β-secretase. Given the therapeutic potential of MTDLs in disease-modifying therapy, our studies revealed several promising MTDLs of which 201 appears to be a potential candidate for immediate preclinical and clinical evaluations.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jasmina Bier ◽  
Sebastian M. Steiger ◽  
Holger M. Reichardt ◽  
Fred Lühder

Induction of T cell apoptosis constitutes a major mechanism by which therapeutically administered glucocorticoids (GCs) suppress inflammation and associated clinical symptoms, for instance in multiple sclerosis (MS) patients suffering from an acute relapse. The sensitivity of T cells to GC action depends on their maturation and activation status, but the precise effect of antigen-priming in a pathological setting has not been explored. Here we used transgenic and congenic mouse models to compare GC-induced apoptosis between naïve and antigen-specific effector T cells from mice immunized with a myelin peptide. Antigen-primed effector T cells were protected from the pro-apoptotic activity of the synthetic GC dexamethasone in a dose-dependent manner, which resulted in their accumulation relative to naïve T cells in vitro and in vivo. Notably, the differential sensitivity of T cells to GC-induced apoptosis correlated with their expression level of the anti-apoptotic proteins Bcl-2 and Bcl-XL and a loss of the mitochondrial membrane potential. Moreover, accumulation of antigen-primed effector T cells following GC treatment in vitro resulted in an aggravated disease course in an adoptive transfer mouse model of MS in vivo, highlighting the clinical relevance of the observed phenomenon. Collectively, our data indicate that antigen-priming influences the T cells’ sensitivity to therapeutically applied GCs in the context of inflammatory diseases.


Sign in / Sign up

Export Citation Format

Share Document