scholarly journals Follicular Helper T-Cell-Based Classification of Endometrial Cancer Promotes Precise Checkpoint Immunotherapy and Provides Prognostic Stratification

2022 ◽  
Vol 12 ◽  
Author(s):  
Yi Chen ◽  
Shuwen You ◽  
Jie Li ◽  
Yifan Zhang ◽  
Georgia Kokaraki ◽  
...  

Despite the fact that management of EC is moving towards four TCGA-based molecular classifications, a pronounced variation in immune response among these molecular subtypes limits its clinical use. We aimed to investigate the determinant biomarker of ICI response in endometrial cancer (EC). We characterized transcriptome signatures associated with tumor immune microenvironment in EC. Two immune infiltration signatures were identified from the TCGA database (n = 520). The high- and low-infiltration clusters were compared for differences in patient clinical characteristics, genomic features, and immune cell transcription signatures for ICI prediction. A Lasso Cox regression model was applied to construct a prognostic gene signature. Time-dependent receiver operating characteristic curve, Kaplan–Meier curve, nomogram, and decision curve analyses were used to assess the prediction capacity. The efficacy of potential biomarker was validated by the Karolinska endometrial cancer cohort (n = 260). Immune signature profiling suggested that T follicular helper–like cells (Tfh) may be an important and favorable factor for EC; high Tfh infiltration showed potential for clinical use in the anti-PD-1 treatment. A Tfh Infiltration Risk Model (TIRM) established using eight genes was validated, and it outperformed the Immune Infiltration Risk Model. The TIRM had a stable prognostic value in combination with clinical risk factors and could be considered as a valuable tool in a clinical prediction model. We identified CRABP1 as an individual poor prognostic factor in EC. The Tfh-based classification distinguishes immune characteristics and predicts ICI efficacy. A nomogram based on Tfh-related risk score accurately predicted the prognosis of patients with EC, demonstrating superior performance to TCGA-based classification.

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Ai-lan Li ◽  
Yong-mei Zhu ◽  
Lai-qiang Gao ◽  
Shu-yue Wei ◽  
Ming-tao Wang ◽  
...  

In the present study, we aimed to investigate immune-related signatures and immune infiltration in melanoma. The transcriptome profiling and clinical data of melanoma were downloaded from The Cancer Genome Atlas database, and their matched normal samples were obtained from the Genotype-Tissue Expression database. After merging the genome expression data using Perl, the limma package was used for data normalization. We screened the differentially expressed genes (DEGs) and obtained immune signatures associated with melanoma by an immune-related signature list from the InnateDB database. Univariate Cox regression analysis was used to identify potential prognostic immune genes, and LASSO analysis was used to identify the hub genes. Next, based on the results of multivariate Cox regression analysis, we constructed a risk model for melanoma. We investigated the correlation between risk score and clinical characteristics and overall survival (OS) of patients. Based on the TIMER database, the association between selected immune signatures and immune cell distribution was evaluated. Next, the Wilcoxon rank-sum test was performed using CIBERSORT, which confirmed the differential distribution of immune-infiltrating cells between different risk groups. We obtained a list of 91 differentially expressed immune-related signatures. Functional enrichment analysis indicated that these immune-related DEGs participated in several areas of immune-related crosstalk, including cytokine-cytokine receptor interactions, JAK–STAT signaling pathway, chemokine signaling pathway, and Th17 cell differentiation pathway. A risk model was established based on multivariate Cox analysis results, and Kaplan-Meier analysis was performed. The Kruskal-Wallis test suggested that a high risk score indicated a poorer OS and correlated with higher American Joint Committee on Cancer-TNM (AJCC-TNM) stages and advanced pathological stages ( P < 0.01 ). Furthermore, the association between hub immune signatures and immune cell distribution was evaluated in specific tumor samples. The Wilcoxon rank-sum test was used to estimate immune infiltration density in the two groups, and results showed that the high-risk group exhibited a lower infiltration density, and the dominant immune cells included M0 macrophages ( P = 0.023 ) and activated mast cells ( P = 0.005 ).


2020 ◽  
Vol 14 (12) ◽  
pp. 1127-1137
Author(s):  
Tong-Tong Zhang ◽  
Yi-Qing Zhu ◽  
Hong-Qing Cai ◽  
Jun-Wen Zheng ◽  
Jia-Jie Hao ◽  
...  

Aim: This study aimed to develop an effective risk predictor for patients with stage II and III colorectal cancer (CRC). Materials & methods: The prognostic value of p-mTOR (Ser2448) levels was analyzed using Kaplan–Meier survival analysis and Cox regression analysis. Results: The levels of p-mTOR were increased in CRC specimens and significantly correlated with poor prognosis in patients with stage II and III CRC. Notably, the p-mTOR level was an independent poor prognostic factor for disease-free survival and overall survival in stage II CRC. Conclusion: Aberrant mTOR activation was significantly associated with the risk of recurrence or death in patients with stage II and III CRC, thus this activated proteins that may serve as a potential biomarker for high-risk CRC.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Qin Huo ◽  
Zhenwei Li ◽  
Siqi Chen ◽  
Juan Wang ◽  
Jiaying Li ◽  
...  

Abstract Purpose Von Willebrand Factor C and EGF Domains (VWCE) is an important gene that regulates cell adhesion, migration, and interaction. However, the correlation between VWCE expression and immune infiltrating in breast cancer remain unclear. In this study, we investigated the correlation between VWCE expression and immune infiltration levels in breast cancer. Methods The expression of VWCE was analyzed by the tumor immune estimation resource (TIMER) and DriverDB databases. Furthermore, genes co-expressed with VWCE and gene ontology (GO) enrichment analysis were investigated by the STRING and Enrichr web servers. Also, we performed the single nucleotide variation (SNV), copy number variation (CNV), and pathway activity analysis through GSCALite. Subsequently, the relationship between VWCE expression and tumor immunity was analyzed by TIMER and TISIDB databases, and further verified the results using Quantitative Real-Time PCR (RT-PCR), Western blotting, and immunohistochemistry. Results The results showed that the expression of VWCE mRNA in breast cancer tissue was significantly lower than that in normal tissues. We found that the expression level of VWCE was associated with subtypes, estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor-2 (HER2) status of breast cancer patients, but there was no significant difference in the expression of VWCE was found in age and nodal status. Further analyses indicated that VWCE was correlated with the activation or inhibition of multiple oncogenic pathways. Additionally, VWCE expression was negatively correlated with the expression of STAT1 (Th1 marker, r = − 0.12, p = 6e−05), but positively correlated with the expression of MS4A4A (r = 0.28, p = 0). These results suggested that the expression of VWCE was correlated with immune infiltration levels of Th1 and M2 macrophage in breast cancer. Conclusions In our study, VWCE expression was associated with a better prognosis and was immune infiltration in breast cancer. These findings demonstrate that VWCE is a potential prognostic biomarker and correlated with tumor immune cell infiltration, and maybe a promising therapeutic target in breast cancer.


2022 ◽  
Vol 12 ◽  
Author(s):  
Lan-Xin Mu ◽  
You-Cheng Shao ◽  
Lei Wei ◽  
Fang-Fang Chen ◽  
Jing-Wei Zhang

Purpose: This study aims to reveal the relationship between RNA N6-methyladenosine (m6A) regulators and tumor immune microenvironment (TME) in breast cancer, and to establish a risk model for predicting the occurrence and development of tumors.Patients and methods: In the present study, we respectively downloaded the transcriptome dataset of breast cancer from Gene Expression Omnibus (GEO) database and The Cancer Genome Atlas (TCGA) database to analyze the mutation characteristics of m6A regulators and their expression profile in different clinicopathological groups. Then we used the weighted correlation network analysis (WGCNA), the least absolute shrinkage and selection operator (LASSO), and cox regression to construct a risk prediction model based on m6A-associated hub genes. In addition, Immune infiltration analysis and gene set enrichment analysis (GSEA) was used to evaluate the immune cell context and the enriched gene sets among the subgroups.Results: Compared with adjacent normal tissue, differentially expressed 24 m6A regulators were identified in breast cancer. According to the expression features of m6A regulators above, we established two subgroups of breast cancer, which were also surprisingly distinguished by the feature of the immune microenvironment. The Model based on modification patterns of m6A regulators could predict the patient’s T stage and evaluate their prognosis. Besides, the low m6aRiskscore group presents an immune-activated phenotype as well as a lower tumor mutation load, and its 5-years survival rate was 90.5%, while that of the high m6ariskscore group was only 74.1%. Finally, the cohort confirmed that age (p &lt; 0.001) and m6aRiskscore (p &lt; 0.001) are both risk factors for breast cancer in the multivariate regression.Conclusion: The m6A regulators play an important role in the regulation of breast tumor immune microenvironment and is helpful to provide guidance for clinical immunotherapy.


2022 ◽  
Author(s):  
Yang Bu ◽  
Kejun Liu ◽  
Yiming Niu ◽  
Ji Hao ◽  
Lei Cui ◽  
...  

Abstract Background: Glucose-6-phosphate dehydrogenase (G6PD) plays an important role in the metabolic and immunological aspects of tumors. In hepatocellular carcinoma (HCC), the alteration of tumor microenvironment influences recurrence and metastasis. We extracted G6PD-related data from public databases of HCC tissues and used a bioinformatics approach to explore the correlation between G6PD expression and clinicopathological features and prognosis of immune cell infiltration in HCC.Methods: We extract G6PD expression information from TCGA and GEO databases in liver cancer tissues and normal tissues, validated by immunohistochemistry, and the correlation between G6PD expression and clinical features is analyzed, and the clinical significance of G6PD in liver cancer is assessed by Kaplan-Meier, Cox regression and prognostic line graph models. Functional enrichment analysis is performed by protein-protein interaction (PPI) network, GO/KEGG, GSEA and G6PD-associated differentially expressed genes (DEGs). TIMER and ssGSEA packages are used to assess the correlation between expression and the level of immune cell infiltration.Results: Our results show that G6PD expression is significantly upregulated in hepatocellular carcinoma tissues (P < 0.001). G6PD expression is associated with histological grade, pathological stage, T-stage, vascular infiltration and AFP level (P < 0.05); HCC patients in the low G6PD expression group had longer overall survival and better prognosis compared with the high G6PD expression group (P < 0.05). The level of G6PD expression also affects the levels of macrophages, unactivated dendritic cells, B cells, and follicular helper T cells in the tumor microenvironment.Conclusion: High expression of G6PD is a potential biomarker for poor prognosis of hepatocellular carcinoma, and G6PD may be a target for immunotherapy of HCC.


2020 ◽  
Vol 40 (5) ◽  
Author(s):  
Xiaodong Chen ◽  
Fen Tian ◽  
Peng Lun ◽  
Yugong Feng

Abstract Tumor-infiltrating immune cells play a decisive part in prognosis and survival. Until now, previous researches have not made clear about the diversity of cell types involved in the immune response. The objective of this work was to confirm the composition of tumor-infiltrating immune cells and their correlation with prognosis in meningiomas based on a metagene approach (known as CIBERSORT) and online databases. A total of 22 tumor-infiltrating immune cells were detected to determine the relationship between the immune infiltration pattern and survival. The proportion of M2 macrophages was more abundant in 68 samples, reaching more than 36%. Univariate Cox regression analysis displayed that the proportion of dendritic cells was obviously related to prognosis. Hierarchical clustering analysis identified two clusters by the method of within sum of squares errors, which exhibited different infiltrating immune cell composition and survival. To summarize, our results indicated that proportions of tumor-infiltrating immune cells as well as cluster patterns were associated with the prognosis, which offered clinical significance for research of meningiomas.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xin Hu ◽  
Liuxing Wu ◽  
Ben Liu ◽  
Kexin Chen

The incidence of adenocarcinoma of the esophagogastric junction (AEG) has markedly increased worldwide. However, the precise etiology of AEG is still unclear, and the therapeutic options thus remain limited. Growing evidence has implicated long non-coding RNAs (lncRNAs) in cancer immunomodulation. This study aimed to examine the tumor immune infiltration status and assess the prognostic value of immune-related lncRNAs in AEG. Using the ESTIMATE method and single-sample GSEA, we first evaluated the infiltration level of 28 immune cell types in AEG samples obtained from the TCGA dataset (N=201). Patients were assigned into high- and low-immune infiltration subtypes based on the immune cell infiltration’s enrichment score. GSEA and mutation pattern analysis revealed that these two immune infiltration subtypes had distinct phenotypes. We identified 1470 differentially expressed lncRNAs in two immune infiltration subtypes. From these differentially expressed lncRNAs, six prognosis-related lncRNAs were selected using the Cox regression analysis. Subsequently, an immune risk signature was constructed based on combining the values of the six prognosis-associated lncRNAs expression levels and multiple regression coefficients. To determine the risk model’s prognostic capability, we performed a series of survival analyses with Kaplan–Meier methods, Cox proportional hazards regression models, and the area under receiver operating characteristic (ROC) curve. The results indicated that the immune-related risk signature could be an independent prognostic factor with a significant predictive value in patients with AEG. Furthermore, the immune-related risk signature can effectively predict the response to immunotherapy and chemotherapy in AEG patients. In conclusion, the proposed immune-related lncRNA prognostic signature is reliable and has high survival predictive value for patients with AEG and is a promising potential biomarker for immunotherapy.


2022 ◽  
Author(s):  
Yuying Tan ◽  
Liqing Lu ◽  
Xujun Liang ◽  
Yongheng Chen

Abstract Background: Colon adenocarcinoma (COAD) is one of the most common malignant tumors and diagnosed at an advanced stage with poor prognosis in the world. Pyroptosis is involved in the initiation and progression of tumors. This research focused on constructing a pyroptosis-related ceRNA network to generate a reliable risk model for risk prediction and immune infiltration analysis of COAD.Methods: Transcriptome data, miRNA-sequencing data and clinical information were downloaded from the TCGA database. Firstly, differentially expressed mRNAs (DEmRNAs), miRNAs (DEmiRNAs), and lncRNAs (DElncRNAs) were identified to construct a pyroptosis-related ceRNA network. Secondly, a pyroptosis-related lncRNA risk model was developed applying univariate Cox regression analysis and least absolute shrinkage and selection operator method (LASSO) regression analysis. The Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analyses were utilized to functionally annotate RNAs contained in the ceRNA network. In addition, Kaplan-Meier analysis, receiver operating characteristic (ROC) curves, univariate and multivariate Cox regression, and nomogram were applied to validate this risk model. Finally, the relationship of this risk model with immune cells and immune checkpoint blockade (ICB) related genes were analyzed.Results: Totally 5373 DEmRNAs, 1159 DElncRNAs and 355 DEmiRNAs were identified. A pyroptosis-related ceRNA regulatory network containing 132 lncRNAs, 7miRNAs and 5 mRNAs was constructed and a ceRNA-based pyroptosis-related risk model including 11 lncRNAs was built. Tumor tissues were classified into high- and low- risk groups according to the median risk score. Kaplan-Meier analysis showed that the high-risk group had a shorter survival time; ROC analysis, independent prognostic analysis and nomogram further indicated the risk model was a significant independent prognostic factor which had excellent ability to predict patients’ risk. Moreover, immune infiltration analysis indicated that the risk model was related to immune infiltration cells (i.e., B cells naïve, T cells follicular helper, Macrophages M1, etc.) and ICB-related genes (i.e., PD-1, CTLA4, HAVCR2, etc).Conclusions: This pyroptosis-related lncRNA risk model possessed good prognostic value and the ability to predict the outcome of ICB immunotherapy in COAD.


2021 ◽  
Author(s):  
Huihui Jiang ◽  
Aiqun Xu ◽  
Min Li ◽  
Rui Han ◽  
Enze Wang ◽  
...  

Abstract Background: Non-small cell lung cancer (NSCLC) ranks first among global cancer-related deaths. Despite the emergence of various immunological and targeted therapies, immune tolerance remains a barrier to treatment. Methods: It has been found that this obstacle can be overcome by targeting autophagy-related genes (ATGs). ATGs were screened by coexpression analysis and the genes related to the prognosis of lung cancer were screened using Kaplan–Meier (K-M) survival analysis, univariate Cox regression, and multivariate Cox regression. The prognostic risk model of ATGs was constructed and verified using K-M survival analysis and receiver operating characteristic (ROC) curve analysis. Results: The prognostic risk model of ATGs was constructed. Gene set enrichment analysis (GSEA) showed that the function and pathway of ATG enrichment were closely related to immune cell function. CIBERSORT, LM22 matrix, and Pearson correlation analysis showed that risk signals were significantly correlated with immune cell infiltration and immune checkpoint genes. Conclusions: We identified and independently verified the ATG (AL691432.2, MMP2-AS1, AC124067.2, CRNDE, ABALON, AL161431.1, NKILA) in NSCLC patients and found that immune regulation in the tumor microenvironment is closely related to this gene.


Author(s):  
Di Yang ◽  
Jian Ma ◽  
Xiao-Xin Ma

The prognosis of patients with endometrial cancer (EC) is closely associated with immune cell infiltration. Although abnormal long non-coding RNA (lncRNA) expression is also linked to poor prognosis in patients with EC, the function and action mechanism of immune infiltration-related lncRNAs underlying the occurrence and development of EC remains unclear. In this study, we analyzed lncRNA expression using The Cancer Genome Atlas and clinical data and identified six lncRNAs as prognostic markers for EC, all of which are associated with the infiltration of immune cell subtypes, as illustrated by ImmLnc database and ssGSEA analysis. Real-time quantitative polymerase chain reaction showed that CDKN2B-AS1 was significantly overexpressed in EC, whereas its knockdown inhibited the proliferation and invasion of EC cells and the in vivo growth of transplanted tumors in nude mice. Finally, we constructed a competing endogenous RNA regulatory network and conducted Gene Ontology enrichment analysis to elucidate the potential molecular mechanism underlying CDKN2B-AS1 function. Overall, we identified molecular targets associated with immune infiltration and prognosis and provide new insights into the development of molecular therapies and treatment strategies against EC.


Sign in / Sign up

Export Citation Format

Share Document