scholarly journals Effects of a Submesoscale Oceanographic Filament on Zooplankton Dynamics in the Arctic Marginal Ice Zone

2021 ◽  
Vol 8 ◽  
Author(s):  
Patricia Kaiser ◽  
Wilhelm Hagen ◽  
Wilken-Jon von Appen ◽  
Barbara Niehoff ◽  
Nicole Hildebrandt ◽  
...  

Submesoscale structures, characterized by intense vertical and horizontal velocities, potentially play a crucial role in oceanographic dynamics and pelagic fluxes. Due to their small spatial scale and short temporal persistence, conditions for in situ measurements are challenging and thus the role of such structures for zooplankton distribution is still unclear. During RV Polarstern expedition PS107 to Arctic Fram Strait in July/August 2017, a submesoscale filament was detected, which initiated an ad hoc oceanographic and biological sampling campaign. To determine zooplankton taxonomic composition, horizontal and vertical distribution, abundance and biomass, vertical MultiNet hauls (depth intervals: 300–200–100–50–10–0 m) were taken at four stations across the filament. Zooplankton data were evaluated in context with the physical-oceanographic observations of the filament to assess submesoscale physical-biological interactions. Our data show that submesoscale features considerably impact zooplankton dynamics. While structuring the pelagial with distinct zooplankton communities in a vertical as well as horizontal dimension, they accumulate abundance and biomass of epipelagic species at the site of convergence. Further, high-velocity jets associated with such dynamics are possibly of major importance for species allocation and biological connectivity, accelerating for instance processes such as the ‘Atlantification’ of the Arctic. Thus, submesoscale features affect the surrounding ecosystem in multiple ways with consequences for higher trophic levels and biogeochemical cycles.

Polar Biology ◽  
2020 ◽  
Author(s):  
Renske P. J. Hoondert ◽  
Nico W. van den Brink ◽  
Martine J. van den Heuvel-Greve ◽  
Ad M. J. Ragas ◽  
A. Jan Hendriks

AbstractStable isotopes are often used to provide an indication of the trophic level (TL) of species. TLs may be derived by using food-web-specific enrichment factors in combination with a representative baseline species. It is challenging to sample stable isotopes for all species, regions and seasons in Arctic ecosystems, e.g. because of practical constraints. Species-specific TLs derived from a single region may be used as a proxy for TLs for the Arctic as a whole. However, its suitability is hampered by incomplete knowledge on the variation in TLs. We quantified variation in TLs of Arctic species by collating data on stable isotopes across the Arctic, including corresponding fractionation factors and baseline species. These were used to generate TL distributions for species in both pelagic and benthic food webs for four Arctic areas, which were then used to determine intra-sample, intra-study, intra-region and inter-region variation in TLs. Considerable variation in TLs of species between areas was observed. This is likely due to differences in parameter choice in estimating TLs (e.g. choice of baseline species) and seasonal, temporal and spatial influences. TLs between regions were higher than the variance observed within regions, studies or samples. This implies that TLs derived within one region may not be suitable as a proxy for the Arctic as a whole. The TL distributions derived in this study may be useful in bioaccumulation and climate change studies, as these provide insight in the variability of trophic levels of Arctic species.


2020 ◽  
Author(s):  
Jan Niklas Macher ◽  
Berry B. van der Hoorn ◽  
Katja T. C. A. Peijnenburg ◽  
Lodewijk van Walraven ◽  
Willem Renema

AbstractZooplankton are key players in marine ecosystems, linking primary production to higher trophic levels. The high abundance and high taxonomic diversity renders zooplankton ideal for biodiversity monitoring. However, taxonomic identification of the zooplankton assemblage is challenging due to its high diversity, subtle morphological differences and the presence of many meroplanktonic species, especially in coastal seas. Molecular techniques such as metabarcoding can help with rapid processing and identification of taxa in complex samples, and are therefore promising tools for identifying zooplankton communities. In this study, we applied metabarcoding of the mitochondrial cytochrome c oxidase I gene to zooplankton samples collected along a latitudinal transect in the North Sea, a shelf sea of the Atlantic Ocean. Northern regions of the North Sea are influenced by inflow of oceanic Atlantic waters, whereas the southern parts are characterised by more coastal waters. Our metabarcoding results indicated strong differences in zooplankton community composition between northern and southern areas of the North Sea, particularly in the classes Copepoda, Actinopterygii (ray-finned fishes) and Polychaeta. We compared these results to the known distributions of species reported in previous studies, and by comparing the abundance of copepods to data obtained from the Continuous Plankton Recorder (CPR). We found that our metabarcoding results are mostly congruent with the reported distribution and abundance patterns of zooplankton species in the North Sea. Our results highlight the power of metabarcoding to rapidly assess complex zooplankton samples, and we suggest that the technique could be used in future monitoring campaigns and biodiversity assessments.HighlightsZooplankton communities are different in northern and southern areas of the North SeaMetabarcoding results are consistent with known species distributions and abundanceMetabarcoding allows for fast identification of meroplanktonic species


2017 ◽  
Vol 38 (2) ◽  
pp. 205-229 ◽  
Author(s):  
Aleksandra Kruss ◽  
Jarosław Tęgowski ◽  
Agnieszka Tatarek ◽  
Józef Wiktor ◽  
Philippe Blondel

Abstract The identification of macroalgal beds is a crucial component for the description of fjord ecosystems. Direct, biological sampling is still the most popular investigation technique but acoustic methods are becoming increasingly recognized as a very efficient tool for the assessment of benthic communities. In 2007 we carried out the first acoustic survey of the littoral areas in Kongsfjorden. A 2.68 km2 area comprised within a 12.40 km2 euphotic zone was mapped along the fjord’s coast using single- and multi-beam echosounders. The singlebeam echosounder (SBES) proved to be a very efficient and reliable tool for macroalgae detection in Arctic conditions. The multibeam echosounder (MBES) was very useful in extending the SBES survey range, even though it’s ability in discriminating benthic communities was limited. The final result of our investigation is a map of the macroalgae distribution around the fjord, showing 39% macroalgae coverage (1.09 km2) of investigated area between isobaths -0.70 m and -30 m. Zonation analysis showed that most of the studied macroalgae areas occur up to 15 m depth (93%). These results were confirmed by biological sampling and observation in key areas. The potential of acoustic imaging of macrophytes, and a proposed methodology for the processing of acoustic data, are presented in this paper along with preliminary studies on the acoustic reflectivity of macroalgae, also highlighting differences among species. These results can be applied to future monitoring of the evolution of kelp beds in different areas of the Arctic, and in the rest of the world.


2014 ◽  
Vol 11 (24) ◽  
pp. 7125-7135 ◽  
Author(s):  
C. A. Stock ◽  
J. P. Dunne ◽  
J. G. John

Abstract. Pronounced projected 21st century trends in regional oceanic net primary production (NPP) raise the prospect of significant redistributions of marine resources. Recent results further suggest that NPP changes may be amplified at higher trophic levels. Here, we elucidate the role of planktonic food web dynamics in driving projected changes in mesozooplankton production (MESOZP) found to be, on average, twice as large as projected changes in NPP by the latter half of the 21st century under a high emissions scenario in the Geophysical Fluid Dynamics Laboratory's ESM2M–COBALT (Carbon, Ocean Biogeochemistry and Lower Trophics) earth system model. Globally, MESOZP was projected to decline by 7.9% but regional MESOZP changes sometimes exceeded 50%. Changes in three planktonic food web properties – zooplankton growth efficiency (ZGE), the trophic level of mesozooplankton (MESOTL), and the fraction of NPP consumed by zooplankton (zooplankton–phytoplankton coupling, ZPC), explain the projected amplification. Zooplankton growth efficiencies (ZGE) changed with NPP, amplifying both NPP increases and decreases. Negative amplification (i.e., exacerbation) of projected subtropical NPP declines via this mechanism was particularly strong since consumers in the subtropics have limited surplus energy above basal metabolic costs. Increased mesozooplankton trophic level (MESOTL) resulted from projected declines in large phytoplankton production. This further amplified negative subtropical NPP declines but was secondary to ZGE and, at higher latitudes, was often offset by increased ZPC. Marked ZPC increases were projected for high-latitude regions experiencing shoaling of deep winter mixing or decreased winter sea ice – both tending to increase winter zooplankton biomass and enhance grazer control of spring blooms. Increased ZPC amplified projected NPP increases in the Arctic and damped projected NPP declines in the northwestern Atlantic and Southern Ocean. Improved understanding of the physical and biological interactions governing ZGE, MESOTL and ZPC is needed to further refine estimates of climate-driven productivity changes across trophic levels.


2012 ◽  
Vol 9 (9) ◽  
pp. 12543-12592 ◽  
Author(s):  
K. G. Schulz ◽  
R. G. J. Bellerby ◽  
C. P. D. Brussaard ◽  
J. Büdenbender ◽  
J. Czerny ◽  
...  

Abstract. Ocean acidification and carbonation, driven by anthropogenic emissions of carbon dioxide (CO2), have been shown to affect a variety of marine organisms and are likely to change ecosystem functioning. High latitudes, especially the Arctic, will be the first to encounter profound changes in carbonate chemistry speciation at a large scale, namely the under-saturation of surface waters with respect to aragonite, a calcium carbonate polymorph produced by several organisms in this region. During a CO2 perturbation study in 2010, in the framework of the EU-funded project EPOCA, the temporal dynamics of a plankton bloom was followed in nine mesocosms, manipulated for CO2 levels ranging initially from about 185 to 1420 μatm. Dissolved inorganic nutrients were added halfway through the experiment. Autotrophic biomass, as identified by chlorophyll a standing stocks (Chl a), peaked three times in all mesocosms. However, while absolute Chl a concentrations were similar in all mesocosms during the first phase of the experiment, higher autotrophic biomass was measured at high in comparison to low CO2 during the second phase, right after dissolved inorganic nutrient addition. This trend then reversed in the third phase. There were several statistically significant CO2 effects on a variety of parameters measured in certain phases, such as nutrient utilization, standing stocks of particulate organic matter, and phytoplankton species composition. Interestingly, CO2 effects developed slowly but steadily, becoming more and more statistically significant with time. The observed CO2 related shifts in nutrient flow into different phytoplankton groups (mainly diatoms, dinoflagellates, prasinophytes and haptophytes) could have consequences for future organic matter flow to higher trophic levels and export production, with consequences for ecosystem productivity and atmospheric CO2.


2018 ◽  
Author(s):  
Barbara Oleszczuk ◽  
Katarzyna Grzelak ◽  
Monika Kędra

Arctic marine ecosystems are currently facing sea ice decrease. Changes in the sea ice cover will influence the Organic Matter (OM) fluxes to the bottom and thus benthic communities. We aimed to examine meio- and macrobenthic biodiversity and community structure, and food web, with use of stable isotopes of carbon (δ13C) and nitrogen (δ15N), in relation to depth, sea ice type, and bloom stage. Benthic samples were collected in Svalbard area during spring time in 2015 and 2016 along with samples of particulate and sediment OM. Svalbard fjords, Storfjorden, Barents Sea shelf, continental slope, and Nansen Basin were characterized by different environmental settings including various sea ice conditions, bloom stage, sediment OM and particulate OM in bottom water. The highest biodiversity and biomass were found at the shelf and slope stations where intensive bloom was observed and was related to higher concentrations of fresh, high-quality OM. Low benthic infaunal diversity, abundance, and biomass were noted in fjords and deep stations where quality and quantity of OM was markedly lower. Deposit feeders were the only feeding guild sampled in the deep stations while at other stations 3-4 trophic levels were found.


Elem Sci Anth ◽  
2019 ◽  
Vol 7 ◽  
Author(s):  
Margaux Gourdal ◽  
Odile Crabeck ◽  
Martine Lizotte ◽  
Virginie Galindo ◽  
Michel Gosselin ◽  
...  

This paper presents the first empirical estimates of dimethyl sulfide (DMS) gas fluxes across permeable sea ice in the Arctic. DMS is known to act as a major potential source of aerosols that strongly influence the Earth’s radiative balance in remote marine regions during the ice-free season. Results from a sampling campaign, undertaken in 2015 between June 2 and June 28 in the ice-covered Western Baffin Bay, revealed the presence of high algal biomass in the bottom 0.1-m section of sea ice (21 to 380 µg Chl a L–1) combined with the presence of high DMS concentrations (212–840 nmol L–1). While ice algae acted as local sources of DMS in bottom sea ice, thermohaline changes within the brine network, from gravity drainage to vertical stabilization, exerted strong control on the distribution of DMS within the interior of the ice. We estimated both the mean DMS molecular diffusion coefficient in brine (5.2 × 10–5 cm2 s–1 ± 51% relative S.D., n = 10) and the mean bulk transport coefficient within sea ice (33 × 10–5 cm2 s–1 ± 41% relative S.D., n = 10). The estimated DMS fluxes ± S.D. from the bottom ice to the atmosphere ranged between 0.47 ± 0.08 µmol m–2 d–1 (n = 5, diffusion) and 0.40 ± 0.15 µmol m–2 d–1 (n = 5, bulk transport) during the vertically stable phase. These fluxes fall within the lower range of direct summer sea-to-air DMS fluxes reported in the Arctic. Our results indicate that upward transport of DMS, from the algal-rich bottom of first-year sea ice through the permeable sea ice, may represent an important pathway for this biogenic gas toward the atmosphere in ice-covered oceans in spring and summer.


2021 ◽  
Vol 22 (3) ◽  
Author(s):  
Irina V. Mashkova ◽  
Anastasiya Kostryukova ◽  
Elena Shchelkanova ◽  
Viktor Trofimenko

Abstract. Mashkova IV, Kostryukova AM, Shchelkanova EE, Trofimenko VV. 2021. Short Communication: Zooplankton as indicator of trophic status of lakes in Ilmen State Reserve, Russia. Biodiversitas 22: 1448-1455. Zooplankton is a potentially powerful tool for assessing the trophic state of aquatic ecosystems. The current paper studied taxonomic composition and biomass of zooplankton communities in ten lakes within Ilmen State Reserve, Chelyabinsk region, Russia and identified the influence of trophic status on its formation. Integrated samples were taken from epilimnion in the summer of 2016-2019. Several criteria were used to determine trophic status: the taxonomic structure and biomass of zooplankton; some hydroecological indicators some hydroecological indicators and the Carlson index. The trophic status of the studied lakes, determined based on the zooplankton biomass, revealed that most of the lakes were in the status of mesotrophic. The number of zooplankton species in the lakes was 44 with Pleuroxus laevis, Bosmina longirostris, Simocephalus vetulus were the most numerous species in mesotrophic lakes; while Chaetonotus ploenensis, Keratella quadrata frenzeli, Leptodora kindti are rare. Zooplankton communities of Bolshoye Miassovo and Maloye Miassovo Lakes were characterized by high species diversity and considered as one of the most significant among the foothill lakes of the eastern slope of South Ural. The study reveals that hydroecological assessment of the ecological status is not exactly precise, as values are not stable and can change not only under the anthropogenic influence but also due to many natural abiotic environmental factors. The research shows that species composition and biomass of zooplankton communities could provide a more accurate assessment of the trophic status of water-bodies.


1997 ◽  
Vol 25 ◽  
pp. 107-110 ◽  
Author(s):  
John W. Weatherly ◽  
Thomas W. Bettge ◽  
Bruce P. Briegleb

The Climate System Model (CSM) developed at the National Center for Atmospheric Research (NCAR) consists of atmosphere, land and ocean models, as well as a dynamic-thermodynamic sea-ice model. The results of sea-ice simulation using the first coupled climate simulation with the CSM is presented. It was found that the simulated total-ice areas in both hemispheres compared well with observations for winter, but were too large for summer. The numerical solution of the cavitating fluid dynamics was found to allow excessive ridging of ice, and an ad hoc correction was implemented. The ice velocities were realistic for the Antarctic, but for the Arctic were turned toward Alaska and Siberia by modeled winds and currents. This ice-drift pattern was reflected by ice thickness, which lacks the observed ridging near Greenland. The results illustrate the sensitivity of sea ice to the simulation of polar climate and the challenge of modeling the entire climate system.


2020 ◽  
Author(s):  
Jasmine Heyse ◽  
Ruben Props ◽  
Pantipa Kongnuan ◽  
Peter De Schryver ◽  
Geert Rombaut ◽  
...  

SummaryThe development of effective management strategies to reduce the occurrence of diseases in aquaculture is hampered by the limited knowledge on the microbial ecology of these systems. In this study, the dynamics and dominant community assembly processes in the rearing water of Litopenaeus vannamei larviculture tanks were determined. Additionally, the contribution of peripheral microbiomes, such as those of live and dry feeds, to the rearing water microbiome were quantified. The community assembly in the hatchery rearing water over time was dominated by stochasticity, which explains the observed heterogeneity between replicate cultivations. The community undergoes two shifts that match with the dynamics of the algal abundances in the rearing water. Source tracking analysis revealed that 37% of all bacteria in the hatchery rearing water were either introduced by the live or dry feeds, or during water exchanges. The contribution of the microbiome from the algae was the largest, followed by that of the Artemia, the exchange water and the dry feeds. Our findings provide fundamental knowledge on the assembly processes and dynamics of rearing water microbiomes and illustrate the crucial role of these peripheral microbiomes in maintaining health-promoting rearing water microbiomes.Originality-Significance StatementMost studies on rearing water microbiomes are characterized by sampling resolutions of multiple days and by few replicate cultivations. Through an 18-day sampling campaign in a Litopenaeus vannamei hatchery where five replicate cultivations were studied at a sampling resolution of one day, we studied the microbiome dynamics in this system. We show that the community assembly is dominated by stochasticity, which explains the heterogeneity between replicate cultivations. The dynamics of the algal community in the rearing water induced shifts in community composition at two differerent timepoints. Finally, we quantified the contribution of live and dry feed microbiomes to the rearing water community for the first time. We found that the contribution of each source was dependent on its taxonomic composition, the bacterial load caused by the addition of this source and the timing of the introduction. These new insights will aid in the further development of effective microbiome management to reduce the frequency and magnitude of bacterial diseases.


Sign in / Sign up

Export Citation Format

Share Document