scholarly journals Temporal biomass dynamics of an Arctic plankton bloom in response to increasing levels of atmospheric carbon dioxide

2012 ◽  
Vol 9 (9) ◽  
pp. 12543-12592 ◽  
Author(s):  
K. G. Schulz ◽  
R. G. J. Bellerby ◽  
C. P. D. Brussaard ◽  
J. Büdenbender ◽  
J. Czerny ◽  
...  

Abstract. Ocean acidification and carbonation, driven by anthropogenic emissions of carbon dioxide (CO2), have been shown to affect a variety of marine organisms and are likely to change ecosystem functioning. High latitudes, especially the Arctic, will be the first to encounter profound changes in carbonate chemistry speciation at a large scale, namely the under-saturation of surface waters with respect to aragonite, a calcium carbonate polymorph produced by several organisms in this region. During a CO2 perturbation study in 2010, in the framework of the EU-funded project EPOCA, the temporal dynamics of a plankton bloom was followed in nine mesocosms, manipulated for CO2 levels ranging initially from about 185 to 1420 μatm. Dissolved inorganic nutrients were added halfway through the experiment. Autotrophic biomass, as identified by chlorophyll a standing stocks (Chl a), peaked three times in all mesocosms. However, while absolute Chl a concentrations were similar in all mesocosms during the first phase of the experiment, higher autotrophic biomass was measured at high in comparison to low CO2 during the second phase, right after dissolved inorganic nutrient addition. This trend then reversed in the third phase. There were several statistically significant CO2 effects on a variety of parameters measured in certain phases, such as nutrient utilization, standing stocks of particulate organic matter, and phytoplankton species composition. Interestingly, CO2 effects developed slowly but steadily, becoming more and more statistically significant with time. The observed CO2 related shifts in nutrient flow into different phytoplankton groups (mainly diatoms, dinoflagellates, prasinophytes and haptophytes) could have consequences for future organic matter flow to higher trophic levels and export production, with consequences for ecosystem productivity and atmospheric CO2.

2013 ◽  
Vol 10 (1) ◽  
pp. 161-180 ◽  
Author(s):  
K. G. Schulz ◽  
R. G. J. Bellerby ◽  
C. P. D. Brussaard ◽  
J. Büdenbender ◽  
J. Czerny ◽  
...  

Abstract. Ocean acidification and carbonation, driven by anthropogenic emissions of carbon dioxide (CO2), have been shown to affect a variety of marine organisms and are likely to change ecosystem functioning. High latitudes, especially the Arctic, will be the first to encounter profound changes in carbonate chemistry speciation at a large scale, namely the under-saturation of surface waters with respect to aragonite, a calcium carbonate polymorph produced by several organisms in this region. During a CO2 perturbation study in Kongsfjorden on the west coast of Spitsbergen (Norway), in the framework of the EU-funded project EPOCA, the temporal dynamics of a plankton bloom was followed in nine mesocosms, manipulated for CO2 levels ranging initially from about 185 to 1420 μatm. Dissolved inorganic nutrients were added halfway through the experiment. Autotrophic biomass, as identified by chlorophyll a standing stocks (Chl a), peaked three times in all mesocosms. However, while absolute Chl a concentrations were similar in all mesocosms during the first phase of the experiment, higher autotrophic biomass was measured as high in comparison to low CO2 during the second phase, right after dissolved inorganic nutrient addition. This trend then reversed in the third phase. There were several statistically significant CO2 effects on a variety of parameters measured in certain phases, such as nutrient utilization, standing stocks of particulate organic matter, and phytoplankton species composition. Interestingly, CO2 effects developed slowly but steadily, becoming more and more statistically significant with time. The observed CO2-related shifts in nutrient flow into different phytoplankton groups (mainly dinoflagellates, prasinophytes and haptophytes) could have consequences for future organic matter flow to higher trophic levels and export production, with consequences for ecosystem productivity and atmospheric CO2.


2021 ◽  
Author(s):  
Vjacheslav Polyakov ◽  
Evgeny Abakumov

<p>Black carbon is one of the short-lived climatically significant factors. This term refers to climate-forming substances that are located for a short amount of time in the atmosphere - from several days to several years. To identify the role of cryoconite in the conditions of a possible climatic crisis, the stabilization of organic matter isolated from cryoconite holes was assessed. Humic acids are part of the organic matter accumulating in soils and cryoconites and are heterogeneous systems of high-molecular condensed compounds formed as a result of the decomposition of organic remains of plants and animals in terrestrial and aquatic ecosystems. Climatic parameters, precursors of humification, and the local position in the landscape determine the diversity of the composition and properties of HAs. Stabilization of organic material is defined as the transformation of organic matter into a state inaccessible to soil microorganisms, and the very property of stabilization is a characteristic stage in the dynamics of carbon. Using 13C NMR spectroscopy, we determined the proportion of aromatic and aliphatic compounds in the composition of HAs in order to assess the stabilization of organic matter in cryoconites from Mount Elbrus (Caucasus Mountains, Russia), the Arctic (Severnaya Zemlya archipelago, Russia) and Antarctica (King George Island, West Antarctica).</p><p>Samples for qualitative analysis of carbon accumulated in cryoconites were carried out during fieldwork in 2020. The studied samples were analyzed at the Department of Applied Ecology, St. Petersburg State University. Humic acids (HAs) were extracted from each sample according to a published IHSS protocol. Solid-state CP/MAS <sup>13</sup>C-NMR spectra of HAs were measured with a Bruker Avance 500 NMR spectrometer.</p><p>Thus, it follows from the obtained results that aliphatic fragments of humic acids predominate in all studied cryoconites. A similar composition of humic acids testifies to a single mechanism of accumulation and development of organic matter in glacier regions. Low biological activity and climatic features prevent condensation of high-molecular compounds in the organic matter of cryoconite holes. This is an essential prerequisite for high rates of carbon dioxide emissions into the atmosphere under the conditions of deglaciation of the studied regions. With the thawing of glaciers and the ingress of cryoconites into warmer conditions, an additional contribution of carbon dioxide to the atmosphere can occur and, therefore, increase the possible climate crisis on our planet.</p><p>This study was supported by Russian Foundation for Basic Research No. 19-05-50107.</p>


2021 ◽  
Author(s):  
Michael Bedington ◽  
Ricardo Torres ◽  
Luca Polimene ◽  
Phillip Wallhead ◽  
Bennett Juhls ◽  
...  

<p>The Arctic ocean receives 11% of the entire global river discharge via several great Arctic rivers that drain vast catchments underlain with carbon-rich permafrost. Arctic marginal shelf seas are therefore heavily influenced by terrestrial dissolved organic matter (tDOM) supply, influencing coastal biogeochemical processes and food-webs, as well as physio-chemical properties (e.g. stratification or nutrient concentrations).</p><p>Whilst carbon and associated macronutrients supplied by tDOM may enhance the nutrient and carbon substrates for lower trophic levels (phytoplankton/zooplankton), promoting increased local and regional productivity, it can also have opposing effects through a series of indirect processes (e.g. increased light absorption limiting light penetration through the water column). Understanding the relative importance and timing of these processes, and how they vary spatially, is necessary to identify how land-ocean interfaces currently operate.</p><p>Future climate scenarios indicate increased quantities of riverine tDOM delivered to the near-shore, with increased freshwater runoff and greater terrestrial permafrost thaw and erosion. This is likely to be exacerbated by the disappearance of seasonal sea ice cover and increased coastal erosion rates. We can therefore expect changes in planktonic phenology and productivity, with concomitant changes in bacterial and higher trophic level success. Understanding how these factors interact and may change under future climate scenarios is therefore critical to predict the future impact on shelf sea Arctic ecosystems and the ecosystem services they provide.</p><p>In the Changing Arctic Carbon cycle in the cOastal Ocean Near-shore (CACOON) project (UK-Germany collaboration) we are using coupled hydrodynamic-biogeochemical models in the extensive shallow shelf of the Laptev sea to explore the relationship between these factors. The ecosystem model ERSEM has been adapted to explicitly include a tDOM component. This coupled model system allows us to investigate both the role of present day tDOM in an Arctic coastal ecosystem and to project the potential impacts of increased tDOM input in future.</p>


2011 ◽  
Vol 75 (3) ◽  
pp. 491-500 ◽  
Author(s):  
Elizabeth K. Thomas ◽  
Jason P. Briner ◽  
Yarrow Axford ◽  
Donna R. Francis ◽  
Gifford H. Miller ◽  
...  

AbstractWe generate a multi-proxy sub-centennial-scale reconstruction of environmental change during the past two millennia from Itilliq Lake, Baffin Island, Arctic Canada. Our reconstruction arises from a finely subsectioned 210Pb- and 14C-dated surface sediment core and includes measures of organic matter (e.g., chlorophyll a; carbon–nitrogen ratio) and insect (Diptera: Chironomidae) assemblages. Within the past millennium, the least productive, and by inference coldest, conditions occurred ca. AD 1700–1850, late in the Little Ice Age. The 2000-yr sediment record also reveals an episode of reduced organic matter deposition during the 6th–7th century AD; combined with the few other records comparable in resolution that span this time interval from Baffin Island, we suggest that this cold episode was experienced regionally. A comparable cold climatic episode occurred in Alaska and western Canada at this time, suggesting that the first millennium AD cold climate anomaly may have occurred throughout the Arctic. Dramatic increases in aquatic biological productivity at multiple trophic levels are indicated by increased chlorophyll a concentrations since AD 1800 and chironomid concentrations since AD 1900, both of which have risen to levels unprecedented over the past 2000 yr.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Pianpian Wu ◽  
Martin J. Kainz ◽  
Fernando Valdés ◽  
Siwen Zheng ◽  
Katharina Winter ◽  
...  

AbstractClimate change scenarios predict increases in temperature and organic matter supply from land to water, which affect trophic transfer of nutrients and contaminants in aquatic food webs. How essential nutrients, such as polyunsaturated fatty acids (PUFA), and potentially toxic contaminants, such as methylmercury (MeHg), at the base of aquatic food webs will be affected under climate change scenarios, remains unclear. The objective of this outdoor mesocosm study was to examine how increased water temperature and terrestrially-derived dissolved organic matter supply (tDOM; i.e., lake browning), and the interaction of both, will influence MeHg and PUFA in organisms at the base of food webs (i.e. seston; the most edible plankton size for zooplankton) in subalpine lake ecosystems. The interaction of higher temperature and tDOM increased the burden of MeHg in seston (< 40 μm) and larger sized plankton (microplankton; 40–200 μm), while the MeHg content per unit biomass remained stable. However, PUFA decreased in seston, but increased in microplankton, consisting mainly of filamentous algae, which are less readily bioavailable to zooplankton. We revealed elevated dietary exposure to MeHg, yet decreased supply of dietary PUFA to aquatic consumers with increasing temperature and tDOM supply. This experimental study provides evidence that the overall food quality at the base of aquatic food webs deteriorates during ongoing climate change scenarios by increasing the supply of toxic MeHg and lowering the dietary access to essential nutrients of consumers at higher trophic levels.


2021 ◽  
Vol 9 (2) ◽  
pp. 189
Author(s):  
Hyeonji Bae ◽  
Dabin Lee ◽  
Jae Joong Kang ◽  
Jae Hyung Lee ◽  
Naeun Jo ◽  
...  

The cellular macromolecular contents and energy value of phytoplankton as primary food source determine the growth of higher trophic levels, affecting the balance and sustainability of oceanic food webs. Especially, proteins are more directly linked with basic functions of phytoplankton biosynthesis and cell division and transferred through the food chains. In recent years, the East/Japan Sea (EJS) has been changed dramatically in environmental conditions, such as physical and chemical characteristics, as well as biological properties. Therefore, developing an algorithm to estimate the protein concentration of phytoplankton and monitor their spatiotemporal variations on a broad scale would be invaluable. To derive the protein concentration of phytoplankton in EJS, the new regional algorithm was developed by using multiple linear regression analyses based on field-measured data which were obtained from 2012 to 2018 in the southwestern EJS. The major factors for the protein concentration were identified as chlorophyll-a (Chl-a) and sea surface nitrate (SSN) in the southwestern EJS. The coefficient of determination (r2) between field-measured and algorithm-derived protein concentrations was 0.55, which is rather low but reliable. The satellite-derived estimation generally follows the 1:1 line with the field-measured data, with Pearson’s correlation coefficient, which was 0.40 (p-value < 0.01, n = 135). No remarkable trend in the long-term annual protein concentration of phytoplankton was found in the study area during our observation period. However, some seasonal difference was observed in winter protein concentration between the 2003–2005 and 2017–2019 periods. The algorithm is developed for the regional East/Japan Sea (EJS) and could contribute to long-term monitoring for climate-associated ecosystem changes. For a better understanding of spatiotemporal variation in the protein concentration of phytoplankton in the EJS, this algorithm should be further improved with continuous field surveys.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Brice K. Grunert ◽  
Maria Tzortziou ◽  
Patrick Neale ◽  
Alana Menendez ◽  
Peter Hernes

AbstractThe Arctic is experiencing rapid warming, resulting in fundamental shifts in hydrologic connectivity and carbon cycling. Dissolved organic matter (DOM) is a significant component of the Arctic and global carbon cycle, and significant perturbations to DOM cycling are expected with Arctic warming. The impact of photochemical and microbial degradation, and their interactive effects, on DOM composition and remineralization have been documented in Arctic soils and rivers. However, the role of microbes, sunlight and their interactions on Arctic DOM alteration and remineralization in the coastal ocean has not been considered, particularly during the spring freshet when DOM loads are high, photoexposure can be quite limited and residence time within river networks is low. Here, we collected DOM samples along a salinity gradient in the Yukon River delta, plume and coastal ocean during peak river discharge immediately after spring freshet and explored the role of UV exposure, microbial transformations and interactive effects on DOM quantity and composition. Our results show: (1) photochemical alteration of DOM significantly shifts processing pathways of terrestrial DOM, including increasing relative humification of DOM by microbes by > 10%; (2) microbes produce humic-like material that is not optically distinguishable from terrestrial humics; and (3) size-fractionation of the microbial community indicates a size-dependent role for DOM remineralization and humification of DOM observed through modeled PARAFAC components of fluorescent DOM, either through direct or community effects. Field observations indicate apparent conservative mixing along the salinity gradient; however, changing photochemical and microbial alteration of DOM with increasing salinity indicate changing DOM composition likely due to microbial activity. Finally, our findings show potential for rapid transformation of DOM in the coastal ocean from photochemical and microbial alteration, with microbes responsible for the majority of dissolved organic matter remineralization.


Polar Biology ◽  
2020 ◽  
Author(s):  
Renske P. J. Hoondert ◽  
Nico W. van den Brink ◽  
Martine J. van den Heuvel-Greve ◽  
Ad M. J. Ragas ◽  
A. Jan Hendriks

AbstractStable isotopes are often used to provide an indication of the trophic level (TL) of species. TLs may be derived by using food-web-specific enrichment factors in combination with a representative baseline species. It is challenging to sample stable isotopes for all species, regions and seasons in Arctic ecosystems, e.g. because of practical constraints. Species-specific TLs derived from a single region may be used as a proxy for TLs for the Arctic as a whole. However, its suitability is hampered by incomplete knowledge on the variation in TLs. We quantified variation in TLs of Arctic species by collating data on stable isotopes across the Arctic, including corresponding fractionation factors and baseline species. These were used to generate TL distributions for species in both pelagic and benthic food webs for four Arctic areas, which were then used to determine intra-sample, intra-study, intra-region and inter-region variation in TLs. Considerable variation in TLs of species between areas was observed. This is likely due to differences in parameter choice in estimating TLs (e.g. choice of baseline species) and seasonal, temporal and spatial influences. TLs between regions were higher than the variance observed within regions, studies or samples. This implies that TLs derived within one region may not be suitable as a proxy for the Arctic as a whole. The TL distributions derived in this study may be useful in bioaccumulation and climate change studies, as these provide insight in the variability of trophic levels of Arctic species.


Water ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 202
Author(s):  
Meilian Chen ◽  
Ji-Hoon Kim ◽  
Sungwook Hong ◽  
Yun Kyung Lee ◽  
Moo Hee Kang ◽  
...  

Fjords in the high Arctic, as aquatic critical zones at the interface of land-ocean continuum, are undergoing rapid changes due to glacier retreat and climate warming. Yet, little is known about the biogeochemical processes in the Arctic fjords. We measured the nutrients and the optical properties of dissolved organic matter (DOM) in both seawater and sediment pore water, along with the remote sensing data of the ocean surface, from three West Svalbard fjords. A cross-fjord comparison of fluorescence fingerprints together with downcore trends of salinity, Cl−, and PO43− revealed higher impact of terrestrial inputs (fluorescence index: ~1.2–1.5 in seawaters) and glaciofluvial runoffs (salinity: ~31.4 ± 2.4 psu in pore waters) to the southern fjord of Hornsund as compared to the northern fjords of Isfjorden and Van Mijenfjorden, tallying with heavier annual runoff to the southern fjord of Hornsund. Extremely high levels of protein-like fluorescence (up to ~4.5 RU) were observed at the partially sea ice-covered fjords in summer, in line with near-ubiquity ice-edge blooms observed in the Arctic. The results reflect an ongoing or post-phytoplankton bloom, which is also supported by the higher levels of chlorophyll a fluorescence at the ocean surface, the very high apparent oxygen utilization through the water column, and the nutrient drawdown at the ocean surface. Meanwhile, a characteristic elongated fluorescence fingerprint was observed in the fjords, presumably produced by ice-edge blooms in the Arctic ecosystems. Furthermore, alkalinity and the humic-like peaks showed a general downcore accumulation trend, which implies the production of humic-like DOM via a biological pathway also in the glaciomarine sediments from the Arctic fjords.


2018 ◽  
Vol 15 (1) ◽  
pp. 209-231 ◽  
Author(s):  
Stacy Deppeler ◽  
Katherina Petrou ◽  
Kai G. Schulz ◽  
Karen Westwood ◽  
Imojen Pearce ◽  
...  

Abstract. High-latitude oceans are anticipated to be some of the first regions affected by ocean acidification. Despite this, the effect of ocean acidification on natural communities of Antarctic marine microbes is still not well understood. In this study we exposed an early spring, coastal marine microbial community in Prydz Bay to CO2 levels ranging from ambient (343 µatm) to 1641 µatm in six 650 L minicosms. Productivity assays were performed to identify whether a CO2 threshold existed that led to a change in primary productivity, bacterial productivity, and the accumulation of chlorophyll a (Chl a) and particulate organic matter (POM) in the minicosms. In addition, photophysiological measurements were performed to identify possible mechanisms driving changes in the phytoplankton community. A critical threshold for tolerance to ocean acidification was identified in the phytoplankton community between 953 and 1140 µatm. CO2 levels  ≥ 1140 µatm negatively affected photosynthetic performance and Chl a-normalised primary productivity (csGPP14C), causing significant reductions in gross primary production (GPP14C), Chl a accumulation, nutrient uptake, and POM production. However, there was no effect of CO2 on C : N ratios. Over time, the phytoplankton community acclimated to high CO2 conditions, showing a down-regulation of carbon concentrating mechanisms (CCMs) and likely adjusting other intracellular processes. Bacterial abundance initially increased in CO2 treatments  ≥ 953 µatm (days 3–5), yet gross bacterial production (GBP14C) remained unchanged and cell-specific bacterial productivity (csBP14C) was reduced. Towards the end of the experiment, GBP14C and csBP14C markedly increased across all treatments regardless of CO2 availability. This coincided with increased organic matter availability (POC and PON) combined with improved efficiency of carbon uptake. Changes in phytoplankton community production could have negative effects on the Antarctic food web and the biological pump, resulting in negative feedbacks on anthropogenic CO2 uptake. Increases in bacterial abundance under high CO2 conditions may also increase the efficiency of the microbial loop, resulting in increased organic matter remineralisation and further declines in carbon sequestration.


Sign in / Sign up

Export Citation Format

Share Document