scholarly journals Circulation Pathways and Exports of Arctic River Runoff Influenced by Atmospheric Circulation Regimes

2021 ◽  
Vol 8 ◽  
Author(s):  
Qiang Wang ◽  
Sergey Danilov ◽  
Dmitry Sidorenko ◽  
Xuezhu Wang

River runoff supplies the Arctic Ocean with a large amount of freshwater and land-derived material, so it is important for both the physical and biogeochemical marine environment. In this study, we used wind perturbation simulations to elucidate the response of the circulation pathways and exports of Arctic river runoff to different atmospheric circulation regimes. Specifically, wind perturbations representing the negative and positive phases of the Arctic Oscillation and Beaufort High modes were imposed over the Arctic Ocean separately in different sensitivity experiments. In addition, some combinations of the two modes were also considered in sensitivity experiments. By comparing these experiments with a control simulation, we revealed the impact of different wind perturbations. The atmospheric circulation regimes influence the Arctic surface geostrophic currents through changing the halosteric height, which is associated with the changes in spatial distribution of surface freshwater. The circulation pathways of river runoff, and Pacific and Atlantic derived surface waters are mainly determined by the surface geostrophic currents. The positive (negative) Arctic Oscillation reduces (increases) freshwater storage and sea surface height in the Makarov and Eurasian basins, thus strengthening (weakening) the cyclonic circulation and weakening (strengthening) the anticyclonic circulation; Accordingly, the Eurasian runoff leaves the Siberian shelf at more eastern (western) locations, and has an enhanced export through the Fram Strait (Canadian Arctic Archipelago). The positive (negative) Beaufort High increases (reduces) freshwater storage and sea surface height in the Amerasian Basin, thus strengthening (weakening) the anticyclonic circulation; Accordingly, the Eurasian runoff export through the Fram Strait and the Mackenzie River runoff export through the Canadian Arctic Archipelago are reduced (increased). The positive Arctic Oscillation increases freshwater available to the Beaufort Gyre, which can be efficiently accumulated there in the presence of a positive Beaufort High forcing. The impact of the Beaufort High mode on the location of the Transpolar Drift Stream and runoff circulation pathways is stronger with a positive Arctic Oscillation than with a neutral Arctic Oscillation state. Our results also showed that Eurasian runoff can only have a relatively small contribution to freshwater accumulation in the Beaufort Gyre region.

2014 ◽  
Vol 11 (2) ◽  
pp. 293-308 ◽  
Author(s):  
E. E. Popova ◽  
A. Yool ◽  
Y. Aksenov ◽  
A. C. Coward ◽  
T. R. Anderson

Abstract. The Arctic Ocean is a region that is particularly vulnerable to the impact of ocean acidification driven by rising atmospheric CO2, with potentially negative consequences for calcifying organisms such as coccolithophorids and foraminiferans. In this study, we use an ocean-only general circulation model, with embedded biogeochemistry and a comprehensive description of the ocean carbon cycle, to study the response of pH and saturation states of calcite and aragonite to rising atmospheric pCO2 and changing climate in the Arctic Ocean. Particular attention is paid to the strong regional variability within the Arctic, and, for comparison, simulation results are contrasted with those for the global ocean. Simulations were run to year 2099 using the RCP8.5 (an Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) scenario with the highest concentrations of atmospheric CO2). The separate impacts of the direct increase in atmospheric CO2 and indirect effects via impact of climate change (changing temperature, stratification, primary production and freshwater fluxes) were examined by undertaking two simulations, one with the full system and the other in which atmospheric CO2 was prevented from increasing beyond its preindustrial level (year 1860). Results indicate that the impact of climate change, and spatial heterogeneity thereof, plays a strong role in the declines in pH and carbonate saturation (Ω) seen in the Arctic. The central Arctic, Canadian Arctic Archipelago and Baffin Bay show greatest rates of acidification and Ω decline as a result of melting sea ice. In contrast, areas affected by Atlantic inflow including the Greenland Sea and outer shelves of the Barents, Kara and Laptev seas, had minimal decreases in pH and Ω because diminishing ice cover led to greater vertical mixing and primary production. As a consequence, the projected onset of undersaturation in respect to aragonite is highly variable regionally within the Arctic, occurring during the decade of 2000–2010 in the Siberian shelves and Canadian Arctic Archipelago, but as late as the 2080s in the Barents and Norwegian seas. We conclude that, for future projections of acidification and carbonate saturation state in the Arctic, regional variability is significant and needs to be adequately resolved, with particular emphasis on reliable projections of the rates of retreat of the sea ice, which are a major source of uncertainty.


2013 ◽  
Vol 7 (2) ◽  
pp. 1313-1358 ◽  
Author(s):  
S. E. L. Howell ◽  
T. Wohlleben ◽  
A. Komarov ◽  
L. Pizzolato ◽  
C. Derksen

Abstract. Record low mean September sea ice area in the Canadian Arctic Archipelago (CAA) was observed in 2011 (146 × 103 km2), a level that was nearly exceeded in 2012 (150 × 103 km2). These values eclipsed previous September records set in 1998 (200 × 103 km2) and 2007 (220 × 103 km2) and are ∼60% lower than the 1981–2010 mean September climatology. In this study, the driving processes contributing to the extreme light years of 2011 and 2012 were investigated, compared to previous extreme minima of 1998 and 2007, and contrasted against historic summer seasons with above average September ice area. The 2011 minimum was driven by positive July surface air temperature (SAT) anomalies that facilitated rapid melt, coupled with atmospheric circulation in July and August that restricted multi-year ice (MYI) inflow from the Arctic Ocean into the CAA. The 2012 minimum was also driven by positive July SAT anomalies (with coincident rapid melt) but further ice decline was temporarily mitigated by atmospheric circulation in August and September which drove Arctic Ocean MYI inflow into the CAA. Atmospheric circulation was comparable between 2011 and 1998 (impeding Arctic Ocean MYI inflow) and 2012 and 2007 (inducing Arctic Ocean MYI inflow). However, evidence of both preconditioned thinner Arctic Ocean MYI flowing into CAA and maximum landfast first-year ice (FYI) thickness within the CAA was more apparent leading up to 2011 and 2012 than 1998 and 2007. The rapid melt process in 2011 and 2012 was more intense than observed in 1998 and 2007 because of the thinner ice cover being more susceptible to positive SAT forcing. The thinner sea ice cover within the CAA in recent years has also helped counteract the processes that facilitate extreme heavy ice years. The recent extreme light years within the CAA are associated with a longer navigation season within the Northwest Passage.


Author(s):  
E. E. Lemeshko ◽  

The article suggests the use of a nonlinear method of data analysis based on a neural network – an algorithm of Kohonen self-organizing maps for the task of typing the atmospheric surface circulation in the Arctic. Based on the construction of self-organizing surface pressure maps, the seasonal and interannual variability of atmospheric circulation in the Arctic for the period 1979–2018 is studied. Several modes were distinguished: cyclonic, two anticyclonic, and three mixed types. Indices of seasonal and annual repeatability of self-organizing atmospheric pressure maps are introduced, which allow us to study the temporal variability of atmospheric circulation modes and a composite method is proposed for calculating connected maps of other hydrometeorological parameters. The regimes of variability of the area of sea ice distribution and sea surface temperature depending on the type of atmospheric circulation are highlighted. Depending on the type of wind regime, there is a change in the area of sea ice distribution due to the variability of the flows of warm Atlantic waters into the Arctic Ocean. The characteristic types of sea surface temperature variability in the Barents Sea are identified, which are modulated by cyclonic / anticyclonic regimes of atmospheric circulation in the region and are an indicator of heat advection by the Atlantic waters. The interrelation is established of the repeatability index of self-organizing atmospheric pressure maps characterizing the types of atmospheric circulation with the variability of the Arctic Oscillation Index. The revealed regularities of the change in the types of cyclonic-anticyclonic atmospheric circulation are manifested in the interannual variability of the introduced repeatability index of selforganizing atmospheric pressure maps, which is a development of the Arctic Oscillation Index, improves understanding of the atmospheric climate circulation regimes in the Arctic.


2013 ◽  
Vol 7 (6) ◽  
pp. 1753-1768 ◽  
Author(s):  
S. E. L. Howell ◽  
T. Wohlleben ◽  
A. Komarov ◽  
L. Pizzolato ◽  
C. Derksen

Abstract. Remarkably low mean September sea ice area in the Canadian Arctic Archipelago (CAA) was observed in 2011 (146 × 103 km2), a record-breaking level that was nearly exceeded in 2012 (150 × 103 km2). These values were lower than previous September records set in 1998 (200 × 103 km2) and 2007 (220 × 103 km2), and are ∼60% lower than the 1981–2010 mean September climatology. In this study, the processes contributing to the extreme light years of 2011 and 2012 were investigated, compared to previous extreme minima of 1998 and 2007, and contrasted against historic summer seasons with above average September ice area. The 2011 minimum was associated with positive June through September (JJAS) surface air temperature (SAT) and net solar radiation (K*) anomalies that facilitated rapid melt, coupled with atmospheric circulation that restricted multi-year ice (MYI) inflow from the Arctic Ocean into the CAA. The 2012 minimum was also associated with positive JJAS SAT and K* anomalies with coincident rapid melt, but further ice decline was temporarily mitigated by atmospheric circulation which drove Arctic Ocean MYI inflow into the CAA. Atmospheric circulation was comparable between 2011 and 1998 (impeding Arctic Ocean MYI inflow) and 2012 and 2007 (inducing Arctic Ocean MYI inflow). However, preconditioning was more apparent leading up to 2011 and 2012 than 1998 and 2007. The rapid melt process in 2011 and 2012 was more intense than observed in 1998 and 2007 because of the thinner ice cover being more susceptible to anomalous thermodynamic forcing. The thinner sea ice cover within the CAA in recent years has also helped counteract the processes that facilitate extreme heavy ice years. The recent extreme light years within the CAA are associated with a longer navigation season within the Northwest Passage.


Atmosphere ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 454
Author(s):  
Andrew R. Jakovlev ◽  
Sergei P. Smyshlyaev ◽  
Vener Y. Galin

The influence of sea-surface temperature (SST) on the lower troposphere and lower stratosphere temperature in the tropical, middle, and polar latitudes is studied for 1980–2019 based on the MERRA2, ERA5, and Met Office reanalysis data, and numerical modeling with a chemistry-climate model (CCM) of the lower and middle atmosphere. The variability of SST is analyzed according to Met Office and ERA5 data, while the variability of atmospheric temperature is investigated according to MERRA2 and ERA5 data. Analysis of sea surface temperature trends based on reanalysis data revealed that a significant positive SST trend of about 0.1 degrees per decade is observed over the globe. In the middle latitudes of the Northern Hemisphere, the trend (about 0.2 degrees per decade) is 2 times higher than the global average, and 5 times higher than in the Southern Hemisphere (about 0.04 degrees per decade). At polar latitudes, opposite SST trends are observed in the Arctic (positive) and Antarctic (negative). The impact of the El Niño Southern Oscillation phenomenon on the temperature of the lower and middle atmosphere in the middle and polar latitudes of the Northern and Southern Hemispheres is discussed. To assess the relative influence of SST, CO2, and other greenhouse gases’ variability on the temperature of the lower troposphere and lower stratosphere, numerical calculations with a CCM were performed for several scenarios of accounting for the SST and carbon dioxide variability. The results of numerical experiments with a CCM demonstrated that the influence of SST prevails in the troposphere, while for the stratosphere, an increase in the CO2 content plays the most important role.


1966 ◽  
Vol 3 (2) ◽  
pp. 237-246 ◽  
Author(s):  
W. S. B. Paterson ◽  
L. K. Law

Seven determinations of geothermal heat flow were made in the general area of southern Prince Patrick Island in the Canadian Arctic Archipelago. Measurements were made from sea ice in water depths of between 200 and 600 m. The mean heat flow for the two stations on the continental shelf in the Arctic Ocean was 0.46 ± 0.08 μcal cm−2 s−1. The mean heat flow for the five stations in the channels to the east of Mould Bay was 1.46 ± 0.16 μcal cm−2 s−1. The instrument and field methods are described. Errors due to the instrument and to the environment are discussed.


2019 ◽  
Vol 19 (5) ◽  
pp. 2787-2812 ◽  
Author(s):  
Betty Croft ◽  
Randall V. Martin ◽  
W. Richard Leaitch ◽  
Julia Burkart ◽  
Rachel Y.-W. Chang ◽  
...  

Abstract. Summertime Arctic aerosol size distributions are strongly controlled by natural regional emissions. Within this context, we use a chemical transport model with size-resolved aerosol microphysics (GEOS-Chem-TOMAS) to interpret measurements of aerosol size distributions from the Canadian Arctic Archipelago during the summer of 2016, as part of the “NETwork on Climate and Aerosols: Addressing key uncertainties in Remote Canadian Environments” (NETCARE) project. Our simulations suggest that condensation of secondary organic aerosol (SOA) from precursor vapors emitted in the Arctic and near Arctic marine (ice-free seawater) regions plays a key role in particle growth events that shape the aerosol size distributions observed at Alert (82.5∘ N, 62.3∘ W), Eureka (80.1∘ N, 86.4∘ W), and along a NETCARE ship track within the Archipelago. We refer to this SOA as Arctic marine SOA (AMSOA) to reflect the Arctic marine-based and likely biogenic sources for the precursors of the condensing organic vapors. AMSOA from a simulated flux (500 µgm-2day-1, north of 50∘ N) of precursor vapors (with an assumed yield of unity) reduces the summertime particle size distribution model–observation mean fractional error 2- to 4-fold, relative to a simulation without this AMSOA. Particle growth due to the condensable organic vapor flux contributes strongly (30 %–50 %) to the simulated summertime-mean number of particles with diameters larger than 20 nm in the study region. This growth couples with ternary particle nucleation (sulfuric acid, ammonia, and water vapor) and biogenic sulfate condensation to account for more than 90 % of this simulated particle number, which represents a strong biogenic influence. The simulated fit to summertime size-distribution observations is further improved at Eureka and for the ship track by scaling up the nucleation rate by a factor of 100 to account for other particle precursors such as gas-phase iodine and/or amines and/or fragmenting primary particles that could be missing from our simulations. Additionally, the fits to the observed size distributions and total aerosol number concentrations for particles larger than 4 nm improve with the assumption that the AMSOA contains semi-volatile species: the model–observation mean fractional error is reduced 2- to 3-fold for the Alert and ship track size distributions. AMSOA accounts for about half of the simulated particle surface area and volume distributions in the summertime Canadian Arctic Archipelago, with climate-relevant simulated summertime pan-Arctic-mean top-of-the-atmosphere aerosol direct (−0.04 W m−2) and cloud-albedo indirect (−0.4 W m−2) radiative effects, which due to uncertainties are viewed as an order of magnitude estimate. Future work should focus on further understanding summertime Arctic sources of AMSOA.


2016 ◽  
Vol 29 (2) ◽  
pp. 889-902 ◽  
Author(s):  
Rasmus A. Pedersen ◽  
Ivana Cvijanovic ◽  
Peter L. Langen ◽  
Bo M. Vinther

Abstract Reduction of the Arctic sea ice cover can affect the atmospheric circulation and thus impact the climate beyond the Arctic. The atmospheric response may, however, vary with the geographical location of sea ice loss. The atmospheric sensitivity to the location of sea ice loss is studied using a general circulation model in a configuration that allows combination of a prescribed sea ice cover and an active mixed layer ocean. This hybrid setup makes it possible to simulate the isolated impact of sea ice loss and provides a more complete response compared to experiments with fixed sea surface temperatures. Three investigated sea ice scenarios with ice loss in different regions all exhibit substantial near-surface warming, which peaks over the area of ice loss. The maximum warming is found during winter, delayed compared to the maximum sea ice reduction. The wintertime response of the midlatitude atmospheric circulation shows a nonuniform sensitivity to the location of sea ice reduction. While all three scenarios exhibit decreased zonal winds related to high-latitude geopotential height increases, the magnitudes and locations of the anomalies vary between the simulations. Investigation of the North Atlantic Oscillation reveals a high sensitivity to the location of the ice loss. The northern center of action exhibits clear shifts in response to the different sea ice reductions. Sea ice loss in the Atlantic and Pacific sectors of the Arctic cause westward and eastward shifts, respectively.


2005 ◽  
Vol 272 (1581) ◽  
pp. 2571-2576 ◽  
Author(s):  
S.J Kutz ◽  
E.P Hoberg ◽  
L Polley ◽  
E.J Jenkins

Global climate change is altering the ecology of infectious agents and driving the emergence of disease in people, domestic animals, and wildlife. We present a novel, empirically based, predictive model for the impact of climate warming on development rates and availability of an important parasitic nematode of muskoxen in the Canadian Arctic, a region that is particularly vulnerable to climate change. Using this model, we show that warming in the Arctic may have already radically altered the transmission dynamics of this parasite, escalating infection pressure for muskoxen, and that this trend is expected to continue. This work establishes a foundation for understanding responses to climate change of other host–parasite systems, in the Arctic and globally.


Sign in / Sign up

Export Citation Format

Share Document