scholarly journals Key Bioturbator Species Within Benthic Communities Determine Sediment Resuspension Thresholds

2021 ◽  
Vol 8 ◽  
Author(s):  
Jaco C. de Smit ◽  
Muriel Z. M. Brückner ◽  
Katherine I. Mesdag ◽  
Maarten G. Kleinhans ◽  
Tjeerd J. Bouma

Abundant research has shown that macrobenthic species are able to increase sediment erodibility through bioturbation. So far, however, this has been at the level of individual species. Consequently, we lack understanding on how such species effects act on the level of bioturbator communities. We assessed the isolated and combined effects of three behaviorally contrasting macrobenthic species, i.e., Corophium volutator, Hediste diversicolor, and Limecola balthica, at varying densities on the critical bed shear stress for sediment resuspension (τcr). Overall, the effect of a single species on sediment erodibility could be described by a power function, indicating a relatively large effect of small bioturbator densities which diminishes toward higher individual density. In contrast to previous studies, our results could not be generalized between species using total metabolic rate, indicating that metabolic rate may be only suitable to integrate bioturbation effects within and between closely related species; highly contrasting species require consideration of species-specific bioturbation strategies. Experiments at the benthic community level revealed that the ability of a benthic community to reduce τcr is mainly determined by the species that has the largest individual effect in reducing τcr, as opposed to the species that is dominant in terms of metabolic rate. Hence, to predict and accurately model the net effect of bioturbator communities on the evolution of tidal flats and estuaries, identification of the key bioturbating species with largest effects on τcr and their spatial distribution is imperative. Metabolic laws may be used to describe their actual activity.

2020 ◽  
Author(s):  
Patricia Kaye Tahura Dumandan

Understanding the mechanisms driving biodiversity patterns amidst an era of global environmental change is the core of modern ecological research. The magnitude of biodiversity losses associated with anthropogenic activities has prompted resource managers and ecologists alike to identify strategies to address conservation issues. Broadly, two types of approaches are employed to answer ecological research questions: 1) single-species and 2) ecosystem-based approach. Single-species approaches are often useful to elucidate mechanisms driving population trajectories of individual species. On the other hand, ecosystem-based approaches can help in identifying general patterns that may be useful for multi-species management. Here, I used both approaches in assessing broad-scale patterns and mechanisms driving count trends of migrating raptors recorded at Hawk Mountain Sanctuary (HMS), Pennsylvania. In the first chapter, I used a hierarchical breakpoint model to identify the assemblage-wide and species-specific timing of the shifts in count trends. Then I evaluated if changes in trend directionality of counts were linked to species’ traits (body size, population size, migratory behavior, tolerance to human presence, DDT (dichlorodiphenyltrichlorethane) susceptibility, habitat or dietary specialization). I found that an assemblage-wide shift in counts occurred around 1974, and this timing was common among 14 of the 16 species in the assemblage. Moreover, I found that habitat specialization appeared to explain the synchronous positive and negative count trends of multiple species. Other traits that I evaluated were not consistently associated with either types of trends. The temporal shift in trends in 1974 emphasized the relative importance of DDT, an organochlorine known to have adversely influenced several wildlife species and was banned in the US around the 1970s, in driving population dynamics of raptor species. However, because the counts of species susceptible to DDT were highly variable after 1974, this may suggest that a suite of additional factors, acting together, affected the recovery of species from DDT-associated declines. Additionally, the potential role of habitat specialization in count trends may suggest important linkages between habitat use and demography. In the second chapter, I used a generalized linear mixed-effects model to assess the relationships between changes in the count totals and total proportional cover of major land-use types in nine states located in the northeastern US (Connecticut, Maine, Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, Vermont). The hierarchical modelling approach that I used allowed me to identify average and species-specific responses to the proportional cover of forested and urban area. These land-use variables were not associated with overall raptor counts. However, species-specific responses were variable and significant. I found that counts of Northern Goshawk, American Kestrel, Rough-legged Hawk, Sharp-shinned Hawk, and Red-tailed Hawk were positively associated with forest cover. On the other hand, Turkey and Black Vultures, Bald Eagle, and Peregrine Falcon were positively associated with urban cover. Moreover, Red-shouldered Hawk, Broad-winged Hawk, and Northern Harrier were not significantly associated with forest cover but were negatively associated with urban cover. Merlin and Cooper’s Hawk exhibited similar non-significant associations to forest but positive associations with urban cover. Finally, Golden Eagle and Osprey were not significantly associated with either land-use variables. These results provided insights on the potential influence of land-use changes on the demography of migrating raptors. Thus, these findings may be useful in improving our predictions of the population trajectories of these species in future landscape scenarios. These results illustrate the utility of evaluating species-level and assemblage-wide patterns in long-term count data. In this case, it allowed me to identify general patterns in counts of migrating raptors and gain detailed insights on the responses of individual species to land-use changes. In doing so, I was able to better understand the potential drivers of their ecological dynamics. By integrating information from these two approaches, we can expect to obtain a better understanding of natural systems and consequently, increase the probability of successful conservation outcomes.


2016 ◽  
Vol 12 (7) ◽  
pp. 20160234 ◽  
Author(s):  
S. Eryn McFarlane ◽  
Axel Söderberg ◽  
David Wheatcroft ◽  
Anna Qvarnström

Pre-zygotic isolation is often maintained by species-specific signals and preferences. However, in species where signals are learnt, as in songbirds, learning errors can lead to costly hybridization. Song discrimination expressed during early developmental stages may ensure selective learning later in life but can be difficult to demonstrate before behavioural responses are obvious. Here, we use a novel method, measuring changes in metabolic rate, to detect song perception and discrimination in collared flycatcher embryos and nestlings. We found that nestlings as early as 7 days old respond to song with increased metabolic rate, and, by 9 days old, have increased metabolic rate when listening to conspecific when compared with heterospecific song. This early discrimination between songs probably leads to fewer heterospecific matings, and thus higher fitness of collared flycatchers living in sympatry with closely related species.


1993 ◽  
Vol 23 (4) ◽  
pp. 591-597 ◽  
Author(s):  
Jiing-Shyang Hseu ◽  
Joseph Buongiorno

The softwood lumber that Canada exports to the United States is a heterogeneous mix of spruce, fir, red cedar, pine, hemlock, and other species. The purpose of this study was to determine to what extent each species is a distinct economic good by using a characteristic demand equation. The theory consisted of a cost-minimizing aggregate U.S. demand for imports and of share equations for each species. Partial adjustment was introduced to accommodate out-of-equilibrium observations. The results showed that the demand for each species, except fir, was elastic with respect to the price of that species, with elasticities that differed substantially by species. Cross-price elasticities between individual species were generally small. It is shown how the effect of a price change of any single species consists of two parts: a market-expansion effect that is the same for all species and a substitution effect that is species specific.


Author(s):  
Niamh E. Redmond ◽  
Grace P. McCormack

Sequences of the ribosomal internal transcribed spacer regions 1 and 2 (ITS-1 and ITS-2) were employed to investigate relationships between putatively very closely related species of marine haplosclerids and to investigate the species status of Haliclona cinerea. Results indicate that intra-genomic and intra-specific levels of diversity are equivalent, and sequences from multiple clones from a number of individuals of a single species could not be separated on phylogenetic trees. As a result, the ITS regions are not suitable markers for population level studies in marine haplosclerids. Sequences of these regions were highly species specific, and large differences were found between species. ITS sequences from three Callyspongia and three Haliclona species could not be aligned successfully and therefore this locus could not be used to investigate relationships between these putative close relatives. However, ITS sequences retrieved from one H. cinerea were very different from sequences generated from other H. cinerea individuals indicating that this species comprises more than one taxon.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Amanda Kowalczyk ◽  
Raghavendran Partha ◽  
Nathan L Clark ◽  
Maria Chikina

Although lifespan in mammals varies over 100-fold, the precise evolutionary mechanisms underlying variation in longevity remain unknown. Species-specific genetic changes have been observed in long-lived species including the naked mole-rat, bats, and the bowhead whale, but these adaptations do not generalize to other mammals. We present a novel method to identify associations between rates of protein evolution and continuous phenotypes across the entire mammalian phylogeny. Unlike previous analyses that focused on individual species, we treat absolute and relative longevity as quantitative traits and demonstrate that these lifespan traits affect the evolutionary constraint on hundreds of genes. Specifically, we find that genes related to cell cycle, DNA repair, cell death, the IGF1 pathway, and immunity are under increased evolutionary constraint in large and long-lived mammals. For mammals exceptionally long-lived for their body size, we find increased constraint in inflammation, DNA repair, and NFKB-related pathways. Strikingly, these pathways have considerable overlap with those that have been previously reported to have potentially adaptive changes in single-species studies, and thus would be expected to show decreased constraint in our analysis. This unexpected finding of increased constraint in many longevity-associated pathways underscores the power of our quantitative approach to detect patterns that generalize across the mammalian phylogeny.


2018 ◽  
Author(s):  
Sean P. Gordon ◽  
Joshua J. Levy ◽  
John P. Vogel

AbstractExisting methods for assigning sequences to individual species from pooled DNA samples rely on differences in genome properties like GC content or sequences from related species. These approaches do not work for closely related species where gross features are indistinguishable and related genomes are lacking. We describe a method and associated software package that uses rapidly evolving repetitive DNA to circumvent these limitations. By using short, repetitive, DNA sequences as species-specific signals we separated closely related genomes without any prior knowledge. This approach is ideal for separating the subgenomes of polyploid species with unsequenced or unknown progenitor genomes.


2020 ◽  
Vol 37 (8) ◽  
pp. 2341-2356 ◽  
Author(s):  
Laura Ávila Robledillo ◽  
Pavel Neumann ◽  
Andrea Koblížková ◽  
Petr Novák ◽  
Iva Vrbová ◽  
...  

Abstract Satellite repeats are major sequence constituents of centromeres in many plant and animal species. Within a species, a single family of satellite sequences typically occupies centromeres of all chromosomes and is absent from other parts of the genome. Due to their common origin, sequence similarities exist among the centromere-specific satellites in related species. Here, we report a remarkably different pattern of centromere evolution in the plant tribe Fabeae, which includes genera Pisum, Lathyrus, Vicia, and Lens. By immunoprecipitation of centromeric chromatin with CENH3 antibodies, we identified and characterized a large and diverse set of 64 families of centromeric satellites in 14 species. These families differed in their nucleotide sequence, monomer length (33–2,979 bp), and abundance in individual species. Most families were species-specific, and most species possessed multiple (2–12) satellites in their centromeres. Some of the repeats that were shared by several species exhibited promiscuous patterns of centromere association, being located within CENH3 chromatin in some species, but apart from the centromeres in others. Moreover, FISH experiments revealed that the same family could assume centromeric and noncentromeric positions even within a single species. Taken together, these findings suggest that Fabeae centromeres are not shaped by the coevolution of a single centromeric satellite with its interacting CENH3 proteins, as proposed by the centromere drive model. This conclusion is also supported by the absence of pervasive adaptive evolution of CENH3 sequences retrieved from Fabeae species.


1984 ◽  
Vol 247 (4) ◽  
pp. H495-H507 ◽  
Author(s):  
L. E. Ford

The question of the proper size denominator for metabolic indices is addressed. Metabolic rate among different species is proportional to the 3/4 power of body weight, not surface area. Muscle power also varies with the 3/4 power of weight, suggesting that metabolic rate is determined mainly by muscle power. Power-to-weight ratio, specific metabolic rate, and a number of metabolic periods, including heart rate, all vary inversely with the 1/4 power of body weight. Thus the relative times required for physiological and pathological processes in different species may be estimated from the average resting heart rate for the species. There are not many small humans among athletic record holders in events involving acceleration and hill climbing, as would be expected if they had higher power-to-weight ratios. Thus the relationship between size and metabolic rate in different species should not be applied within the single species of humans. Evidence is reviewed showing that basal metabolic rate in humans is determined mainly by lean body mass.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Arangasamy Yazhini ◽  
Narayanaswamy Srinivasan ◽  
Sankaran Sandhya

AbstractAfrotheria is a clade of African-origin species with striking dissimilarities in appearance and habitat. In this study, we compared whole proteome sequences of six Afrotherian species to obtain a broad viewpoint of their underlying molecular make-up, to recognize potentially unique proteomic signatures. We find that 62% of the proteomes studied here, predominantly involved in metabolism, are orthologous, while the number of homologous proteins between individual species is as high as 99.5%. Further, we find that among Afrotheria, L. africana has several orphan proteins with 112 proteins showing < 30% sequence identity with their homologues. Rigorous sequence searches and complementary approaches were employed to annotate 156 uncharacterized protein sequences and 28 species-specific proteins. For 122 proteins we predicted potential functional roles, 43 of which we associated with protein- and nucleic-acid binding roles. Further, we analysed domain content and variations in their combinations within Afrotheria and identified 141 unique functional domain architectures, highlighting proteins with potential for specialized functions. Finally, we discuss the potential relevance of highly represented protein families such as MAGE-B2, olfactory receptor and ribosomal proteins in L. africana and E. edwardii, respectively. Taken together, our study reports the first comparative study of the Afrotherian proteomes and highlights salient molecular features.


Plants ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 4
Author(s):  
Oleg S. Alexandrov ◽  
Olga V. Razumova ◽  
Gennady I. Karlov

5S rDNA is organized as a cluster of tandemly repeated monomers that consist of the conservative 120 bp coding part and non-transcribed spacers (NTSs) with different lengths and sequences among different species. The polymorphism in the 5S rDNA NTSs of closely related species is interesting for phylogenetic and evolutional investigations, as well as for the development of molecular markers. In this study, the 5S rDNA NTSs were amplified with universal 5S1/5S2 primers in some species of the Elaeagnaceae Adans. family. The polymerase chain reaction (PCR) products of five Elaeagnus species had similar lengths near 310 bp and were different from Shepherdia canadensis (L.) Nutt. and Sh. argentea (Pusch.) Nutt. samples (260 bp and 215 bp, respectively). The PCR products were cloned and sequenced. An analysis of the sequences revealed that intraspecific levels of NTS identity are high (approximately 95–96%) and similar in the Elaeagnus L. species. In Sh. argentea, this level was slightly lower due to the differences in the poly-T region. Moreover, the intergeneric and intervarietal NTS identity levels were studied and compared. Significant differences between species (except E. multiflora Thunb. and E. umbellata Thunb.) and genera were found. Herein, a range of the NTS features is discussed. This study is another step in the investigation of the molecular evolution of Elaeagnaceae and may be useful for the development of species-specific DNA markers in this family.


Sign in / Sign up

Export Citation Format

Share Document