scholarly journals TGF-β1 Signaling: Immune Dynamics of Chronic Kidney Diseases

2021 ◽  
Vol 8 ◽  
Author(s):  
Philip Chiu-Tsun Tang ◽  
Alex Siu-Wing Chan ◽  
Cai-Bin Zhang ◽  
Cristina Alexandra García Córdoba ◽  
Ying-Ying Zhang ◽  
...  

Chronic kidney disease (CKD) is a major cause of morbidity and mortality worldwide, imposing a great burden on the healthcare system. Regrettably, effective CKD therapeutic strategies are yet available due to their elusive pathogenic mechanisms. CKD is featured by progressive inflammation and fibrosis associated with immune cell dysfunction, leading to the formation of an inflammatory microenvironment, which ultimately exacerbating renal fibrosis. Transforming growth factor β1 (TGF-β1) is an indispensable immunoregulator promoting CKD progression by controlling the activation, proliferation, and apoptosis of immunocytes via both canonical and non-canonical pathways. More importantly, recent studies have uncovered a new mechanism of TGF-β1 for de novo generation of myofibroblast via macrophage-myofibroblast transition (MMT). This review will update the versatile roles of TGF-β signaling in the dynamics of renal immunity, a better understanding may facilitate the discovery of novel therapeutic strategies against CKD.

2012 ◽  
Vol 209 (11) ◽  
pp. 2033-2047 ◽  
Author(s):  
Thomas Bauer ◽  
Anna Zagórska ◽  
Jennifer Jurkin ◽  
Nighat Yasmin ◽  
René Köffel ◽  
...  

Transforming growth factor-β1 (TGF-β1) is a fundamental regulator of immune cell development and function. In this study, we investigated the effects of TGF-β1 on the differentiation of human Langerhans cells (LCs) and identified Axl as a key TGF-β1 effector. Axl belongs to the TAM (Tyro3, Axl, and Mer) receptor tyrosine kinase family, whose members function as inhibitors of innate inflammatory responses in dendritic cells and are essential to the prevention of lupus-like autoimmunity. We found that Axl expression is induced by TGF-β1 during LC differentiation and that LC precursors acquire Axl early during differentiation. We also describe prominent steady-state expression as well as inflammation-induced activation of Axl in human epidermal keratinocytes and LCs. TGF-β1–induced Axl enhances apoptotic cell (AC) uptake and blocks proinflammatory cytokine production. The antiinflammatory role of Axl in the skin is reflected in a marked impairment of the LC network preceding spontaneous skin inflammation in mutant mice that lack all three TAM receptors. Our findings highlight the importance of constitutive Axl expression to tolerogenic barrier immunity in the epidermis and define a mechanism by which TGF-β1 enables silent homeostatic clearing of ACs to maintain long-term self-tolerance.


Cancers ◽  
2018 ◽  
Vol 10 (6) ◽  
pp. 159 ◽  
Author(s):  
Jiaqi Tang ◽  
Cody Gifford ◽  
Rohan Samarakoon ◽  
Paul Higgins

The multi-functional cytokine transforming growth factor-β1 (TGF-β1) has growth inhibitory and anti-inflammatory roles during homeostasis and the early stages of cancer. Aberrant TGF-β activation in the late-stages of tumorigenesis, however, promotes development of aggressive growth characteristics and metastatic spread. Given the critical importance of this growth factor in fibrotic and neoplastic disorders, the TGF-β1 network is subject to extensive, multi-level negative controls that impact receptor function, mothers against decapentaplegic homolog 2/3 (SMAD2/3) activation, intracellular signal bifurcation into canonical and non-canonical pathways and target gene promotor engagement. Such negative regulators include phosphatase and tensin homologue (PTEN), protein phosphatase magnesium 1A (PPM1A), Klotho, bone morphogenic protein 7 (BMP7), SMAD7, Sloan-Kettering Institute proto-oncogene/ Ski related novel gene (Ski/SnoN), and bone morphogenetic protein and activin membrane-bound Inhibitor (BAMBI). The progression of certain cancers is accompanied by loss of expression, overexpression, mislocalization, mutation or deletion of several endogenous repressors of the TGF-β1 cascade, further modulating signal duration/intensity and phenotypic reprogramming. This review addresses how their aberrant regulation contributes to cellular plasticity, tumor progression/metastasis and reversal of cell cycle arrest and discusses the unexplored therapeutic value of restoring the expression and/or function of these factors as a novel approach to cancer treatment.


2016 ◽  
Vol 310 (8) ◽  
pp. F689-F696 ◽  
Author(s):  
Albert S. Chang ◽  
Catherine K. Hathaway ◽  
Oliver Smithies ◽  
Masao Kakoki

Transforming growth factor-β1 (TGF-β1) is established to be involved in the pathogenesis of diabetic nephropathy. The diabetic milieu enhances oxidative stress and induces the expression of TGF-β1. TGF-β1 promotes cell hypertrophy and extracellular matrix accumulation in the mesangium, which decreases glomerular filtration rate and leads to chronic renal failure. Recently, TGF-β1 has been demonstrated to regulate urinary albumin excretion by both increasing glomerular permeability and decreasing reabsorption in the proximal tubules. TGF-β1 also increases urinary excretion of water, electrolytes and glucose by suppressing tubular reabsorption in both normal and diabetic conditions. Although TGF-β1 exerts hypertrophic and fibrogenic effects in diabetic nephropathy, whether suppression of the function of TGF-β1 can be an option to prevent or treat the complication is still controversial. This is partly because adrenal production of mineralocorticoids could be augmented by the suppression of TGF-β1. However, differentiating the molecular mechanisms for glomerulosclerosis from those for the suppression of the effects of mineralocorticoids by TGF-β1 may assist in developing novel therapeutic strategies for diabetic nephropathy. In this review, we discuss recent findings on the role of TGF-β1 in diabetic nephropathy.


2018 ◽  
Vol 25 (15) ◽  
pp. 1805-1816 ◽  
Author(s):  
Shifa Narula ◽  
Chanderdeep Tandon ◽  
Simran Tandon

Matrix metalloproteinases (MMPs) are members of calcium dependent-zinc containing endopeptidases that play a pivotal role in extracellular matrix (ECM) remodeling. MMPs are also known to cleave non-matrix proteins, including cell surface receptors, TNF-α, angiotensin-II, growth factors, (especially transforming growth factor-β1, ΤGF- β1) plasminogen, endothelin and other bioactive molecules. The tissue inhibitors of metalloproteinases (TIMPs) inhibit the activity of MMPs and decrease ECM degradation. Various patho-physiological conditions have been linked with the imbalance of ECM synthesis and degradation. Numerous studies have reported the significance of MMPs and TIMPs in the progression of kidney pathologies, including glomerulonephritis, diabetic nephropathy, renal cancer, and nephrolithiasis. Although dysregulated activity of MMPs could directly or indirectly lead to pathological morbidities, their contribution in disease progression is still understated. Specifically, MMP activity in the kidneys and it's relation to kidney diseases has been the subject of a limited number of investigations. Therefore, the aim of the present review is to provide an updated insight of the involvement of MMPs and TIMPs in the pathogenesis of inflammatory and degenerative kidney disorders.


2021 ◽  
Vol 22 (6) ◽  
pp. 2952
Author(s):  
Tzu-Yu Hou ◽  
Shi-Bei Wu ◽  
Hui-Chuan Kau ◽  
Chieh-Chih Tsai

Transforming growth factor-β1 (TGF-β1)-induced myofibroblast transdifferentiation from orbital fibroblasts is known to dominate tissue remodeling and fibrosis in Graves’ ophthalmopathy (GO). However, the signaling pathways through which TGF-β1 activates Graves’ orbital fibroblasts remain unclear. This study investigated the role of the mitogen-activated protein kinase (MAPK) pathway in TGF-β1-induced myofibroblast transdifferentiation in human Graves’ orbital fibroblasts. The MAPK pathway was assessed by measuring the phosphorylation of p38, c-Jun N-terminal kinase (JNK), and extracellular-signal-regulated kinase (ERK) by Western blots. The expression of connective tissue growth factor (CTGF), α-smooth muscle actin (α-SMA), and fibronectin representing fibrogenesis was estimated. The activities of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) responsible for extracellular matrix (ECM) metabolism were analyzed. Specific pharmacologic kinase inhibitors were used to confirm the involvement of the MAPK pathway. After treatment with TGF-β1, the phosphorylation levels of p38 and JNK, but not ERK, were increased. CTGF, α-SMA, and fibronectin, as well as TIMP-1 and TIMP-3, were upregulated, whereas the activities of MMP-2/-9 were inhibited. The effects of TGF-β1 on the expression of these factors were eliminated by p38 and JNK inhibitors. The results suggested that TGF-β1 could induce myofibroblast transdifferentiation in human Graves’ orbital fibroblasts through the p38 and JNK pathways.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Yueyi Yang ◽  
Wenjing Liu ◽  
JieYa Wei ◽  
Yujia Cui ◽  
Demao Zhang ◽  
...  

AbstractGap junction (GJ) has been indicated to have an intimate correlation with adhesion junction. However, the direct interaction between them partially remains elusive. In the current study, we aimed to elucidate the role of N-cadherin, one of the core components in adhesion junction, in mediating connexin 43, one of the functional constituents in gap junction, via transforming growth factor-β1(TGF-β1) induction in osteoblasts. We first elucidated the expressions of N-cadherin induced by TGF-β1 and also confirmed the upregulation of Cx43, and the enhancement of functional gap junctional intercellular communication (GJIC) triggered by TGF-β1 in both primary osteoblasts and MC3T3 cell line. Colocalization analysis and Co-IP experimentation showed that N-cadherin interacts with Cx43 at the site of cell–cell contact. Knockdown of N-cadherin by siRNA interference decreased the Cx43 expression and abolished the promoting effect of TGF-β1 on Cx43. Functional GJICs in living primary osteoblasts and MC3T3 cell line were also reduced. TGF-β1-induced increase in N-cadherin and Cx43 was via Smad3 activation, whereas knockdown of Smad3 signaling by using siRNA decreased the expressions of both N-cadherin and Cx43. Overall, these data indicate the direct interactions between N-cadherin and Cx43, and reveal the intervention of adhesion junction in functional gap junction in living osteoblasts.


1998 ◽  
Vol 275 (4) ◽  
pp. L637-L644 ◽  
Author(s):  
Yu-Chen Lee ◽  
D. Eugene Rannels

Type II pulmonary epithelial cells respond to anthracite coal dust PSOC 867 with increased synthesis of extracellular matrix (ECM) components. Alveolar macrophages modulate this response by pathways that may involve soluble mediators, including tumor necrosis factor-α (TNF-α) or transforming growth factor-β1 (TGF-β1). The effects of TNF-α (10 ng/ml) and/or TGF-β1 (2 ng/ml) were thus investigated in dust-exposed primary type II cell cultures. In control day 1 or day 3 cultures, TNF-α and/or TGF-β1 had little or no effect on the synthesis of type II cellular proteins, independent of whether the cells were exposed to dust. With PSOC 867 exposure, where ECM protein synthesis is elevated, TNF-α and TGF-β1 further increased both the absolute and relative rates of ECM synthesis on day 3 but had little effect on day 1. Each mediator increased expression of fibronectin mRNA, as well as of ECM fibronectin content, in a manner qualitatively similar to their effects on synthesis. Thus TNF-α and TGF-β1 modulate both ECM synthesis and fibronectin content in coal dust-exposed type II cell cultures.


Sign in / Sign up

Export Citation Format

Share Document