scholarly journals A Robust Symbiotic Relationship Between the Ciliate Paramecium multimicronucleatum and the Bacterium Ca. Trichorickettsia Mobilis

2020 ◽  
Vol 11 ◽  
Author(s):  
Timofey Mironov ◽  
Elena Sabaneyeva

Close reciprocal interactions in symbiotic systems have suggested the holobiont concept, in which the host and its microbiota are considered as a single entity. Ciliates are known for their ability to form symbiotic associations with prokaryotes. Relationships between the partners in such systems vary from mutualism to parasitism and differ significantly in their robustness. We assessed the viability of the ciliate Paramecium multimicronucleatum and its ability to maintain its intranuclear endosymbiont Ca. Trichorickettsia mobilis (Rickettsiaceae) after treatment with antibiotics characterized by different mode of action, such as ampicillin, streptomycin, chloramphenicol, tetracycline. The presence of endosymbionts in the host cell was determined by means of living cell observations made using differential interference contrast or fluorescence in situ hybridization with the species-specific oligonucleotide probe (FISH). Administration of antibiotics traditionally used in treatments of rickettsioses, tetracycline and chloramphenicol, depending on the concentration used and the ciliate strain treated, either caused death of both, infected and control cells, or did not affect the ability of the host to maintain the intranuclear endosymbiont. The surviving cells always manifested motile bacteria in the macronucleus. Streptomycin treatment never led to the loss of endosymbionts in any of the four infected strains, and nearly all ciliates remained viable. Ampicillin treatment never caused host cell death, but resulted in formation of filamentous and immobile oval bacterial forms. Under repeated ampicillin treatments, a part of endosymbionts was registered in the host cytoplasm, as evidenced both by FISH and transmission electron microscopy. Endosymbionts located in the host cytoplasm were enclosed in vacuoles, apparently, corresponding to autophagosomes. Nevertheless, the bacteria seemed to persist in this compartment and might cause relapse of the infection. Although the antibiotic sensitivity profile of Trichorickettsia seems to resemble that of other representatives of Rickettsiaceae, causative agents of severe diseases in humans, neither of the antibiotic treatments used in this study resulted in an aposymbiotic cell line, apparently, due to the protists’ sensitivity to tetracyclines, the drugs of preference in rickettsiosis treatment. The observed robustness of this symbiotic system makes it a good model for further elaboration of the holobiont concept.

1978 ◽  
Vol 56 (5) ◽  
pp. 502-531 ◽  
Author(s):  
William Newcomb ◽  
R. L. Peterson ◽  
Dale Callaham ◽  
John G. Torrey

Correlated fluorescence, bright-field, transmission electron, and scanning electron microscopic studies were made on developing root nodules of Comptonia peregrina (L.) Coult. (Myricaceae) produced by a soil actinomycete which invades the root and establishes a symbiosis leading to fixation of atmospheric dinitrogen. After entering the host via a root hair infection, the hyphae of the endophyte perforate root cortical cells by local degradation of host cell walls and penetration of the host cytoplasm. The intracellular hyphae are always surrounded by host plasma membrane and a thick polysaccharide material termed the capsule. (For convenience, term intracellular refers to the endophyte being inside a Comptonia cell as distinguished from being intercellular, i.e.. between host cells, even though the former is actually extracellular as the endophyte is separated from the host cytoplasm by the host plasmalemma.) Numerous profiles of vesiculate rough endoplasmic reticulum (RER) occur near the growing hyphae. Although the capsule shows a positive Thiery reaction indicating its polysaccharide nature, the fibrillar contents of the RER do not, leaving uncertain whether the capsule results from polymers derived from the RER. Amyloplasts of the cortical cells lose their starch deposits during hyphal proliferation. The hyphae branch extensively in specific layers of the cortex, penetrating much of the host cytoplasm. At this stage, hyphal ends become swollen and form septate club-shaped vesicles within the periphery of the host cells. Lipid-like inclusions and Thiery-positive particles, possibly glycogen, are observed in the hyphae at this time. Associated with hyphal development is an increase in average host cell volume, although nuclear volume appears to remain constant. Concomitant with vesicle maturation, the mitochondrial population increases sharply, suggesting a possible relationship to vesicle function. The intimate interactions between host and endophyte during development of the symbiotic relationship are emphasized throughout.


2006 ◽  
Vol 87 (1) ◽  
pp. 17-27 ◽  
Author(s):  
Guillemond B. Ouellette ◽  
Mohamed Cherif ◽  
Marie Simard

Abstract Various cell reactions occurred in staghorn sumac plants inoculated with Fusarium oxysporum f. sp. callistephi. Light and transmission electron microscopy observations and results of cytochemical tests showed: 1) increased laticifers and latex production in the phloem; 2) tylosis formation; 3) host cell wall modifications, including appositions or other cell wall thickenings; and 4) unusual cross wall formation in some cells, and cell hypertrophy and hyperplasia. Tylosis walls labelled for pectin and cellulose and many displayed inner suberin-like layers. These layers were also noted in cells of the medullary sheath and in many cells with dense content and thickened walls in the barrier zones that had formed. These zones also contained fibres with newly-formed gelatinous-like layers. In the vicinity of these cells, host cell walls were frequently altered, associated with opaque matter. Many small particles present in chains also occurred in some of these cells, which contained only remnants of host cytoplasm. Light microscopy observations showed that pronounced tissue proliferation and aberrant cells occurred in the outer xylem in the infected plants. Unusual neoplasmic tissue also formed from cells surrounding the pith and medullary sheath, and it spanned directly across the pre-existing xylem tissue and burst as large mounds on the stems.


Author(s):  
Kiersun Jones ◽  
Jie Zhu ◽  
Cory B. Jenkinson ◽  
Dong Won Kim ◽  
Mariel A. Pfeifer ◽  
...  

To cause the devastating rice blast disease, the hemibiotrophic fungus Magnaporthe oryzae produces invasive hyphae (IH) that are enclosed in a plant-derived interfacial membrane, known as the extra-invasive hyphal membrane (EIHM), in living rice cells. Little is known about when the EIHM is disrupted and how the disruption contributes to blast disease. Here we show that the disruption of the EIHM correlates with the hyphal growth stage in first-invaded susceptible rice cells. Our approach utilized GFP that was secreted from IH as an EIHM integrity reporter. Secreted GFP (sec-GFP) accumulated in the EIHM compartment but appeared in the host cytoplasm when the integrity of the EIHM was compromised. Live-cell imaging coupled with sec-GFP and various fluorescent reporters revealed that the loss of EIHM integrity preceded shrinkage and eventual rupture of the rice vacuole. The vacuole rupture coincided with host cell death, which was limited to the invaded cell with presumed closure of plasmodesmata. We report that EIHM disruption and host cell death are landmarks that delineate three distinct infection phases (early biotrophic, late biotrophic, and transient necrotrophic phases) within the first-invaded cell before reestablishment of biotrophy in second-invaded cells. M. oryzae effectors exhibited infection phase-specific localizations, including entry of the apoplastic effector Bas4 into the host cytoplasm through the disrupted EIHM during the late biotrophic phase. Understanding how infection phase-specific cellular dynamics are regulated and linked to host susceptibility will offer potential targets that can be exploited to control blast disease.


Author(s):  
D. M. DePace

The majority of blood vessels in the superior cervical ganglion possess a continuous endothelium with tight junctions. These same features have been associated with the blood brain barrier of the central nervous system and peripheral nerves. These vessels may perform a barrier function between the capillary circulation and the superior cervical ganglion. The permeability of the blood vessels in the superior cervical ganglion of the rat was tested by intravenous injection of horseradish peroxidase (HRP). Three experimental groups of four animals each were given intravenous HRP (Sigma Type II) in a dosage of.08 to.15 mg/gm body weight in.5 ml of.85% saline. The animals were sacrificed at five, ten or 15 minutes following administration of the tracer. Superior cervical ganglia were quickly removed and fixed by immersion in 2.5% glutaraldehyde in Sorenson's.1M phosphate buffer, pH 7.4. Three control animals received,5ml of saline without HRP. These were sacrificed on the same time schedule. Tissues from experimental and control animals were reacted for peroxidase activity and then processed for routine transmission electron microscopy.


Author(s):  
N. D. Evans ◽  
M. K. Kundmann

Post-column energy-filtered transmission electron microscopy (EFTEM) is inherently challenging as it requires the researcher to setup, align, and control both the microscope and the energy-filter. The software behind an EFTEM system is therefore critical to efficient, day-to-day application of this technique. This is particularly the case in a multiple-user environment such as at the Shared Research Equipment (SHaRE) User Facility at Oak Ridge National Laboratory. Here, visiting researchers, who may oe unfamiliar with the details of EFTEM, need to accomplish as much as possible in a relatively short period of time.We describe here our work in extending the base software of a commercially available EFTEM system in order to automate and streamline particular EFTEM tasks. The EFTEM system used is a Philips CM30 fitted with a Gatan Imaging Filter (GIF). The base software supplied with this system consists primarily of two Macintosh programs and a collection of add-ons (plug-ins) which provide instrument control, imaging, and data analysis facilities needed to perform EFTEM.


Author(s):  
Kenneth S. Vecchio ◽  
John A. Hunt

In-situ experiments conducted within a transmission electron microscope provide the operator a unique opportunity to directly observe microstructural phenomena, such as phase transformations and dislocation-precipitate interactions, “as they happen”. However, in-situ experiments usually require a tremendous amount of experimental preparation beforehand, as well as, during the actual experiment. In most cases the researcher must operate and control several pieces of equipment simultaneously. For example, in in-situ deformation experiments, the researcher may have to not only operate the TEM, but also control the straining holder and possibly some recording system such as a video tape machine. When it comes to in-situ fatigue deformation, the experiments became even more complicated with having to control numerous loading cycles while following the slow crack growth. In this paper we will describe a new method for conducting in-situ fatigue experiments using a camputer-controlled tensile straining holder.The tensile straining holder used with computer-control system was manufactured by Philips for the Philips 300 series microscopes. It was necessary to modify the specimen stage area of this holder to work in the Philips 400 series microscopes because the distance between the optic axis and holder airlock is different than in the Philips 300 series microscopes. However, the program and interfacing can easily be modified to work with any goniometer type straining holder which uses a penrmanent magnet motor.


Animals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 2063
Author(s):  
Awad A. Shehata ◽  
Shereen Basiouni ◽  
Reinhard Sting ◽  
Valerij Akimkin ◽  
Marc Hoferer ◽  
...  

Poult enteritis and mortality syndrome (PEMS) is one of the most significant problem affecting turkeys and continues to cause severe economic losses worldwide. Although the specific causes of PEMS remains unknown, this syndrome might involve an interaction between several causative agents such as enteropathogenic viruses (coronaviruses, rotavirus, astroviruses and adenoviruses) and bacteria and protozoa. Non-infectious causes such as feed and management are also interconnected factors. However, it is difficult to determine the specific cause of enteric disorders under field conditions. Additionally, similarities of clinical signs and lesions hamper the accurate diagnosis. The purpose of the present review is to discuss in detail the main viral possible causative agents of PEMS and challenges in diagnosis and control.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Ayushi Chaurasiya ◽  
Swati Garg ◽  
Ashish Khanna ◽  
Chintam Narayana ◽  
Ved Prakash Dwivedi ◽  
...  

AbstractHijacking of host metabolic status by a pathogen for its regulated dissemination from the host is prerequisite for the propagation of infection. M. tuberculosis secretes an NAD+-glycohydrolase, TNT, to induce host necroptosis by hydrolyzing Nicotinamide adenine dinucleotide (NAD+). Herein, we expressed TNT in macrophages and erythrocytes; the host cells for M. tuberculosis and the malaria parasite respectively, and found that it reduced the NAD+ levels and thereby induced necroptosis and eryptosis resulting in premature dissemination of pathogen. Targeting TNT in M. tuberculosis or induced eryptosis in malaria parasite interferes with pathogen dissemination and reduction in the propagation of infection. Building upon our discovery that inhibition of pathogen-mediated host NAD+ modulation is a way forward for regulation of infection, we synthesized and screened some novel compounds that showed inhibition of NAD+-glycohydrolase activity and pathogen infection in the nanomolar range. Overall this study highlights the fundamental importance of pathogen-mediated modulation of host NAD+ homeostasis for its infection propagation and novel inhibitors as leads for host-targeted therapeutics.


Viruses ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1358
Author(s):  
Brigitte Sigrist ◽  
Jessica Geers ◽  
Sarah Albini ◽  
Dennis Rubbenstroth ◽  
Nina Wolfrum

Avian bornaviruses were first described in 2008 as the causative agents of proventricular dilatation disease (PDD) in parrots and their relatives (Psittaciformes). To date, 15 genetically highly diverse avian bornaviruses covering at least five viral species have been discovered in different bird orders. Currently, the primary diagnostic tool is the detection of viral RNA by conventional or real-time RT-PCR (rRT-PCR). One of the drawbacks of this is the usage of either specific assays, allowing the detection of one particular virus, or of assays with a broad detection spectrum, which, however, do not allow for the simultaneous specification of the detected virus. To facilitate the simultaneous detection and specification of avian bornaviruses, a multiplex real-time RT-PCR assay was developed. Whole-genome sequences of various bornaviruses were aligned. Primers were designed to recognize conserved regions within the overlapping X/P gene and probes were selected to detect virus species-specific regions within the target region. The optimization of the assay resulted in the sensitive and specific detection of bornaviruses of Psittaciformes, Passeriformes, and aquatic birds. Finally, the new rRT-PCR was successfully employed to detect avian bornaviruses in field samples from various avian species. This assay will serve as powerful tool in epidemiological studies and will improve avian bornavirus detection.


Sign in / Sign up

Export Citation Format

Share Document