scholarly journals Anaerobic and Microaerobic Pretreatment for Improving Methane Production From Paper Waste in Anaerobic Digestion

2021 ◽  
Vol 12 ◽  
Author(s):  
Chao Song ◽  
Wanwu Li ◽  
Fanfan Cai ◽  
Guangqing Liu ◽  
Chang Chen

Having been generated with a tremendous amount annually, paper waste (PW) represents a large proportion in municipal solid waste (MSW) and also a potential source of renewable energy production through the application of anaerobic digestion (AD). However, the recalcitrant lignocellulosic structure poses obstacles to efficient utilization in this way. Recently, anaerobic and microaerobic pretreatment have attracted attention as approaches to overcome the obstacles of biogas production. This study was set out to present a systematic comparison and assessment of anaerobic and microaerobic pretreatment of PW with different oxygen loadings by five microbial agents: composting inoculum (CI), straw-decomposing inoculum (SI), cow manure (CM), sheep manure (SM), and digestate effluent (DE). The hints of microbial community evolution during the pretreatment and AD were tracked by 16S rRNA high-throughput sequencing. The results demonstrated that PW pretreated by DE with an oxygen loading of 15 ml/gVS showed the highest cumulative methane yield (CMY) of 343.2 ml/gVS, with a BD of 79.3%. In addition to DE, SI and SM were also regarded as outstanding microbial agents for pretreatment because of the acceleration of methane production at the early stage of AD. The microbial community analysis showed that Clostridium sensu stricto 1 and Clostridium sensu stricto 10 possessed high relative abundance after anaerobic pretreatment by SI, while Bacteroides and Macellibacteroides were enriched after microaerobic pretreatment by SM, which were all contributable to the cellulose degradation. Besides, aerobic Bacillus in SI and Acinetobacter in SM and DE probably promoted lignin degradation only under microaerobic conditions. During AD, VadinBC27, Ruminococcaceae Incertae Sedis, Clostridium sensu stricto 1, Fastidiosipila, and Caldicoprobacter were the crucial bacteria that facilitated the biodegradation of PW. By comparing the groups with same microbial agent, it could be found that changing the oxygen loading might result in the alternation between hydrogenotrophic and acetoclastic methanogens, which possibly affected the methanogenesis stage. This study not only devised a promising tactic for making full use of PW but also provided a greater understanding of the evolution of microbial community in the pretreatment and AD processes, targeting the efficient utilization of lignocellulosic biomass in full-scale applications.

Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8290
Author(s):  
Okkyoung Choi ◽  
Sae Eun Hwang ◽  
Hyojung Park ◽  
Byoung-In Sang

Anaerobic digestion using cigarette butts, one of most littered items, was studied not only as a waste treatment, but also as an energy production method. Methane production from cigarette butts was measured through the biochemical methane potential (BMP) test and it was evaluated whether it is possible to produce electrical energy. Intact cigarettes or individual components (filter, paper, and leaf) were supplied as the sole carbon source (substrate) for the BMP test. The tendency of methane production indicated biodegradation in the order of paper, filter, and leaves; however, the filter of cigarettes was the substrate produced the highest amount of methane per total solid. The microbial community was also analyzed in each anaerobic digestion reactor, and substrate-specific microorganisms were identified, such as Proteiniphilum strain (filter) and Methanobacterium formicicum (paper). In intact cigarettes, the related microbial community became dominant over time in the order of paper, filter, and leaf. The conversion of cigarette butts to methane, a renewable energy source, can be proposed as a sustainable route for energy demand, for example, in a smoking room.


2021 ◽  
Author(s):  
HongMei Zhao ◽  
Meng Jiang

Abstract Anaerobic digestion is a widely accepted method to treat wastes such as peanut shell. The energy and nutrients are simultaneously recovered by this method. The objective of this study was to elucidate the effect of TiO 2 nanoparticles in co-digestion of hybrid Pennisetum and peanut shell under mesophilic conditions. The results demonstrated the methane (CH 4 ) production was improved by adding the TiO 2 nanoparticles. The cumulative gas production is best (up to 11,133.3 mL) by adding 0.15% nano-TiO 2 particles. The microbial community analysis showed that Methanobacterium and Methanosarcina were enriched in the presence of TiO 2 nanoparticles indicating that TiO 2 can improve CH 4 production by stimulating the growth of methanogens.


Author(s):  
Reza Barati Rashvanlou ◽  
Mahdi Farzadkia ◽  
Abbas Ali Moserzadeh ◽  
Asghar Riazati ◽  
Chiang Wei ◽  
...  

Introduction: One of biological wastewater treatment methods that utilizes to both digesting waste activated sludge and methane production is anaerobic digestion (AD). It is believed to be most effective solution in terms of energy crisis and environmental pollution issues. Materials and Methods: In this study the sludge was digested anaerobically sampled from a full-scale WWTP, located at south of Tehran, Iran for evaluation. To study the microbial community within the sludge the MiSeq Sequencing method utilized. Based on our field data (data not shown) and microbial community data, a schematic diagram of probable leading pathways was made in the studied digester. Results: At first, the community variety in the bulk sludge and richness were enhanced followed by loading increasing. Meanwhile, the loading change enhanced the community richness and variety of the sludge. By comparing the rank-abundance distributions, a shallow gradient would show high evenness since the abundances of diverse species are alike. The results showed all the communities were extremely diverse and 15 phyla were distinguished in the sludge sample. The dominant phyla of the community were Bacteroidetes and Firmicutes and quantity of the two phyla were 21% and 11%, respectively. Anaerobaculum, Acinetobacter, Syntrophomonas, and Coprothermobacter were the chief genera for the microbial communities and the sum of four genera were 7%, 3%, 3%, and 2%, respectively. Conclusion: It was shown that syntrophic acetate oxidizing bacterias (SAOBs) metabolized acetate through hydrogen trophic methanogenesis in the digester. Generally, the findings may be useful to help the wastewater operators to utilize an effective method that able to treat waste sludge plus methane production, simultaneously.


2020 ◽  
Vol 26 (1) ◽  
Author(s):  
Shaona Wang ◽  
Kang Du ◽  
Rongfang Yuan ◽  
Huilun Chen ◽  
Fei Wang ◽  
...  

The effects of four types of sulfonamide antibiotics (SAs), including sulfaquinoxaline, sulfamethoxazole, sulfamethoxydiazine and sulfathiazole, on the digestion performance during anaerobic digestion process were studied using a lab-scale anaerobic sequencing batch reactor, and the changes of the community structure in the presence of SAs were investigated with the help of high throughput sequencing. The results indicated that when SAs were added, the hydrolytic acidification process was inhibited, and the accumulation of volatile fatty acids (VFAs) was induced, resulting in the suppression of methane production. However, the inhibition mechanism of different SAs was quite different. The inhibitory effect of high concentration of SAs on the hydrolysis of solid particulate matter into dissolved organic matter followed the order of sulfaquinoxaline > sulfamethoxydiazine > sulfathiazole > sulfamethoxazole. SAs have obvious inhibitory effects on acidification and methanation of dissolved organic matter, especially sulfathiazole. The richness and the community composition of the microorganism including bacteria and archaea in the digestion system were affected by SAs. Under the effect of SAs, the relative abundance of many microorganisms is negatively correlated with methane production, among which Methanobrevibacter, a kind of Archaea, had the greatest influence on methane production.


2018 ◽  
Vol 84 (6) ◽  
Author(s):  
Jingjing Wan ◽  
Yuhang Jing ◽  
Yue Rao ◽  
Shicheng Zhang ◽  
Gang Luo

ABSTRACT Thermophilic alkaline fermentation followed by mesophilic anaerobic digestion (TM) for hydrogen and methane production from waste-activated sludge (WAS) was investigated. The TM process was also compared to a process with mesophilic alkaline fermentation followed by a mesophilic anaerobic digestion (MM) and one-stage mesophilic anaerobic digestion (M) process. The results showed that both hydrogen yield (74.5 ml H 2 /g volatile solids [VS]) and methane yield (150.7 ml CH 4 /g VS) in the TM process were higher than those (6.7 ml H 2 /g VS and 127.8 ml CH 4 /g VS, respectively) in the MM process. The lowest methane yield (101.2 ml CH 4 /g VS) was obtained with the M process. Taxonomic results obtained from metagenomic analysis showed that different microbial community compositions were established in the hydrogen reactors of the TM and MM processes, which also significantly changed the microbial community compositions in the following methane reactors compared to that with the M process. The dynamics of bacterial pathogens were also evaluated. For the TM process, the reduced diversity and total abundance of bacterial pathogens in WAS were observed in the hydrogen reactor and were further reduced in the methane reactor, as revealed by metagenomic analysis. The results also showed not all bacterial pathogens were reduced in the reactors. For example, Collinsella aerofaciens was enriched in the hydrogen reactor, which was also confirmed by quantitative PCR (qPCR) analysis. The study further showed that qPCR was more sensitive for detecting bacterial pathogens than metagenomic analysis. Although there were some differences in the relative abundances of bacterial pathogens calculated by metagenomic and qPCR approaches, both approaches demonstrated that the TM process was more efficient for the removal of bacterial pathogens than the MM and M processes. IMPORTANCE This study developed an efficient process for bioenergy (H 2 and CH 4 ) production from WAS and elucidates the dynamics of bacterial pathogens in the process, which is important for the utilization and safe application of WAS. The study also made an attempt to combine metagenomic and qPCR analyses to reveal the dynamics of bacterial pathogens in anaerobic processes, which could overcome the limitations of each method and provide new insights regarding bacterial pathogens in environmental samples.


Processes ◽  
2019 ◽  
Vol 7 (9) ◽  
pp. 590
Author(s):  
Tingting Zhong ◽  
Yali Liu ◽  
Xiaorong Kang

Batch tests were carried out to study the effect of simultaneous addition of ethylenediaminetetraacetic acid and Ni2+ (EDTA-Ni) on anaerobic digestion (AD) performances of kitchen wastes (KWs). The results indicated that the cumulative biogas yield and methane content were enhanced to 563.82 mL/gVS and 63.7% by adding EDTA-Ni, respectively, which were almost 1.15 and 1.07-fold of that in the R2 with Ni2+ addition alone. At the same time, an obvious decrease of propionic acid was observed after EDTA-Ni addition. The speciation analysis of Ni showed that the percentages of water-soluble and exchangeable Ni were increased to 38.8% and 36.3% due to EDTA-Ni addition, respectively. Also, the high-throughput sequencing analysis revealed that the EDTA-Ni promoted the growth and metabolism of Methanosarcina and Methanobacterium, which might be the major reason for propionic acid degradation and methane production.


Sign in / Sign up

Export Citation Format

Share Document