scholarly journals Clinical Epidemiology, Risk Factors, and Control Strategies of Klebsiella pneumoniae Infection

2021 ◽  
Vol 12 ◽  
Author(s):  
De Chang ◽  
Lokesh Sharma ◽  
Charles S. Dela Cruz ◽  
Dong Zhang

Klebsiella species cause infections at multiple sites, including lung, urinary tract, bloodstream, wound or surgical site, and brain. These infections are more likely to occur in people with preexisting health conditions. Klebsiella pneumoniae (K. pneumoniae) has emerged as a major pathogen of international concern due to the increasing incidences of hypervirulent and carbapenem-resistant strains. It is imperative to understand risk factors, prevention strategies, and therapeutic avenues to treat multidrug-resistant Klebsiella infections. Here, we highlight the epidemiology, risk factors, and control strategies against K. pneumoniae infections to highlight the grave risk posed by this pathogen and currently available options to treat Klebsiella-associated diseases.

mBio ◽  
2018 ◽  
Vol 9 (3) ◽  
Author(s):  
Roberto Adamo ◽  
Immaculada Margarit

ABSTRACT Antibiotics and vaccines have greatly impacted human health in the last century by dramatically reducing the morbidity and mortality associated with infectious diseases. The recent challenge posed by the emergence of multidrug-resistant bacteria could possibly be addressed by novel immune prophylactic and therapeutic approaches. Among the newly threatening pathogens, Klebsiella pneumoniae is particularly worrisome in the nosocomial setting, and its surface polysaccharides are regarded as promising antigen candidates. The majority of Klebsiella carbapenem-resistant strains belong to the sequence type 158 (ST258) lineage, with two main clades expressing capsular polysaccharides CPS1 and CPS2. In a recent article, S. D. Kobayashi and colleagues (mBio 9:e00297-18, 2018, https://doi.org/10.1128/mBio.00297-18) show that CPS2-specific IgGs render ST258 clade 2 bacteria more sensitive to human serum and phagocytic killing. E. Diago-Navarro et al. (mBio 9:e00091-18, 2018, https://doi.org/10.1128/mBio.00091-18) generated two murine monoclonal antibodies recognizing distinct glycotopes of CPS2 that presented functional activity against multiple ST258 strains. These complementary studies represent a step toward the control of this dangerous pathogen.


2017 ◽  
Vol 62 (1) ◽  
Author(s):  
Karlijn van Loon ◽  
Anne F. Voor in ‘t holt ◽  
Margreet C. Vos

ABSTRACT Carbapenem-resistant Enterobacteriaceae (CRE) are major health care-associated pathogens and responsible for hospital outbreaks worldwide. To prevent a further increase in CRE infections and to improve infection prevention strategies, it is important to summarize the current knowledge about CRE infection prevention in hospital settings. This systematic review aimed to identify risk factors for CRE acquisition among hospitalized patients. In addition, we summarized the environmental sources/reservoirs and the most successful infection prevention strategies related to CRE. A total of 3,983 potentially relevant articles were identified and screened. Finally, we included 162 studies in the systematic review, of which 69 studies regarding risk factors for CRE acquisition were included in the random-effects meta-analysis studies. The meta-analyses regarding risk factors for CRE acquisition showed that the use of medical devices generated the highest pooled estimate (odds ratio [OR] = 5.09; 95% confidence interval [CI] = 3.38 to 7.67), followed by carbapenem use (OR = 4.71; 95% CI = 3.54 to 6.26). To control hospital outbreaks, bundled interventions, including the use of barrier/contact precautions for patients colonized or infected with CRE, are needed. In addition, it is necessary to optimize the therapeutic approach, which is an important message to infectious disease specialists, who need to be actively involved in a timely manner in the treatment of patients with known CRE infections or suspected carriers of CRE.


Antibiotics ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 560
Author(s):  
Teresa Fasciana ◽  
Andrea Ciammaruconi ◽  
Bernardina Gentile ◽  
Paola Di Carlo ◽  
Roberta Virruso ◽  
...  

Rapid identification and characterization of multidrug-resistant Klebsiella pneumoniae strains is essential to diagnose severe infections in patients. In clinical routine practice, K. pneumoniae is frequently identified and characterized for outbreak investigation. Pulsed-field gel electrophoresis or multilocus sequence typing could be used, but, unfortunately, these methods are time-consuming, laborious, expensive, and do not provide any information about the presence of resistance and virulence genes. In recent years, the decreasing cost of next-generation sequencing and its easy use have led to it being considered a useful method, not only for outbreak surveillance but also for rapid identification and evaluation, in a single step, of virulence factors and resistance genes. Carbapenem-resistant strains of K. pneumoniae have become endemic in Italy, and in these strains the ability to form biofilms, communities of bacteria fixed in an extracellular matrix, can defend the pathogen from the host immune response as well as from antibiotics, improving its persistence in epithelial tissues and on medical device surfaces.


2013 ◽  
Vol 57 (8) ◽  
pp. 3990-3993 ◽  
Author(s):  
Carlo Tascini ◽  
Enrico Tagliaferri ◽  
Tommaso Giani ◽  
Alessandro Leonildi ◽  
Sarah Flammini ◽  
...  

ABSTRACTInfections caused by carbapenem-resistant KPC-producingKlebsiella pneumoniaeare responsible for high rates of mortality and represent a major therapeutic challenge, especially when the isolates are also resistant to colistin. We used the checkerboard method to evaluate the synergistic activity of 10 antibiotic combinations against 13 colistin-resistant KPC-producingK. pneumoniaeisolates (colistin MIC range of 8 to 128 mg/liter). Colistin plus rifampin was the only combination that demonstrated consistent synergistic bacteriostatic activity against 13/13 strains tested, reducing the colistin MIC below the susceptibility breakpoint (MIC ≤ 2 mg/liter) in 7/13 strains at rifampin concentrations ranging from 4 to 16 mg/liter. Bactericidal synergistic activity was also documented for 8/13 tested strains. Other antimicrobial combinations with carbapenems, gentamicin, and tigecycline showed variously synergistic results. Colistin plus rifampin also exhibited bacteriostatic synergistic activity against 4/4 colistin-susceptible KPC-producingK. pneumoniaeisolates (colistin MIC range of 0.5 to 2 mg/liter) and 4/4 ertapenem-resistant extended-spectrum beta-lactamase (ESBL)-producingK. pneumoniaeisolates (ertapenem MIC range of 16 to 32 mg/liter). Collectively, our data suggest that colistin plus rifampin is the most consistently synergistic combination against KPC-producingK. pneumoniaeisolates, including colistin-resistant strains. Colistin-rifampin combinations may have a role in the treatment of multidrug-resistantK. pneumoniaeand may possibly slow the selection of heteroresistant subpopulations during colistin therapy.


2010 ◽  
Vol 54 (12) ◽  
pp. 5193-5200 ◽  
Author(s):  
Victoire de Lastours ◽  
Françoise Chau ◽  
Florence Tubach ◽  
Blandine Pasquet ◽  
Etienne Ruppé ◽  
...  

ABSTRACT The important role of commensal flora as a natural reservoir of bacterial resistance is now well established. However, whether the behavior of each commensal flora is similar to that of other floras in terms of rates of carriage and risk factors for bacterial resistance is unknown. During a 6-month period, we prospectively investigated colonization with fluoroquinolone-resistant bacteria in the three main commensal floras from hospitalized patients at admission, targeting Escherichia coli in the fecal flora, coagulase-negative Staphylococcus (CNS) in the nasal flora, and α-hemolytic streptococci in the pharyngeal flora. Resistant strains were detected on quinolone-containing selective agar. Clinical and epidemiological data were collected. A total of 555 patients were included. Carriage rates of resistance were 8.0% in E. coli, 30.3% in CNS for ciprofloxacin, and 27.2% in streptococci for levofloxacin; 56% of the patients carried resistance in at least one flora but only 0.9% simultaneously in all floras, which is no more than random. Risk factors associated with the carriage of fluoroquinolone-resistant strains differed between fecal E. coli (i.e., colonization by multidrug-resistant bacteria) and nasal CNS (i.e., age, coming from a health care facility, and previous antibiotic treatment with a fluoroquinolone) while no risk factors were identified for pharyngeal streptococci. Despite high rates of colonization with fluoroquinolone-resistant bacteria, each commensal flora behaved independently since simultaneous carriage of resistance in the three distinct floras was uncommon, and risk factors differed. Consequences of environmental selective pressures vary in each commensal flora according to its local specificities (clinical trial NCT00520715 [http://clinicaltrials.gov/ct2/show/NCT00520715 ]).


2014 ◽  
Vol 143 (2) ◽  
pp. 376-384 ◽  
Author(s):  
Y. LIU ◽  
L.-G. WAN ◽  
Q. DENG ◽  
X.-W. CAO ◽  
Y. YU ◽  
...  

SUMMARYA total of 180 non-duplicate carbapenem-resistant Klebsiella pneumoniae isolates were recovered from patients hospitalized between December 2010 and January 2012 at a Chinese hospital. Eight KPC-2, four NDM-1, one VIM-2, and five KPC-2 plus IMP-4 producers were identified and all were multidrug resistant due to the presence of other resistance determinants, including extended-spectrum β-lactamases (CTX-M-15, SHV-12), 16S rRNA methylases (armA, rmtB) and plasmid-mediated quinolone-resistance determinants (qnrA, B, S, aac(6′)-Ib-cr). Nine K. pneumoniae clones (Kpn-A1/ST395, Kpn-A3/ST11, Kpn-A2/ST134, Kpn-B/ST263, Kpn-C/ST37, Kpn-D/ST39, Kpn-E/ST1151, Kpn-F/ST890, Kpn-G/ST1153) were identified. blaKPC-2 was located on transferable ~65 kb IncL/M (ST395, ST11, ST134, ST39) and ~100 kb IncA/C (ST37, ST1153, ST890) plasmids, respectively. On the other hand, blaNDM-1 was associated with a ~70 kb IncA/C plasmid (ST263). However, non-typable plasmids of ~40 kb containing blaVIM-2 were detected in the ST1151 clone. This work reports the first co-occurrence of four diverse types of carbapenemase of K. pneumoniae clones from a single hospital in China. IncA/C, IncL/M, and other successful plasmids may be important for the dissemination of carbapenemases, producing a complex epidemiological picture.


2021 ◽  
Author(s):  
Yuzhen Qiu ◽  
Wen Xu ◽  
Yunqi Dai ◽  
Ruoming Tan ◽  
Jialin Liu ◽  
...  

Abstract Background: Carbapenem-resistant Klebsiella pneumoniae bloodstream infections (CRKP-BSIs) are associated with high morbidity and mortality rates, especially in critically ill patients. Comprehensive mortality risk analyses and therapeutic assessment in real-world practice are beneficial to guide individual treatment.Methods: We retrospectively analyzed 87 patients with CRKP-BSIs (between July 2016 and June 2020) to identify the independent risk factors for 28-day all-cause mortality. The therapeutic efficacies of tigecycline-and polymyxin B-based therapies were analyzed.Results: The 28-day all-cause mortality and in-hospital mortality rates were 52.87% and 67.82%, respectively, arising predominantly from intra-abdominal (56.32%) and respiratory tract infections (21.84%). A multivariate analysis showed that 28-day all-cause mortality was independently associated with the patient’s APACHE II score (p = 0.002) and presence of septic shock at BSI onset (p = 0.006). All-cause mortality was not significantly different between patients receiving tigecycline- or polymyxin B-based therapy (55.81% vs. 53.85%, p = 0.873), and between subgroups mortality rates were also similar. Conclusions: Critical illness indicators (APACHE II scores and presence of septic shock at BSI onset) were independent risk factors for 28-day all-cause mortality. There was no significant difference between tigecycline- and polymyxin B-based therapy outcomes. Prompt and appropriate infection control should be implemented to prevent CRKP infections.


2010 ◽  
Vol 54 (6) ◽  
pp. 2291-2302 ◽  
Author(s):  
Malcolm G. P. Page ◽  
Clothilde Dantier ◽  
Eric Desarbre

ABSTRACT BAL30072 is a new monocyclic β-lactam antibiotic belonging to the sulfactams. Its spectrum of activity against significant Gram-negative pathogens with β-lactam-resistant phenotypes was evaluated and was compared with the activities of reference drugs, including aztreonam, ceftazidime, cefepime, meropenem, imipenem, and piperacillin-tazobactam. BAL30072 showed potent activity against multidrug-resistant (MDR) Pseudomonas aeruginosa and Acinetobacter sp. isolates, including many carbapenem-resistant strains. The MIC90s were 4 μg/ml for MDR Acinetobacter spp. and 8 μg/ml for MDR P. aeruginosa, whereas the MIC90 of meropenem for the same sets of isolates was >32 μg/ml. BAL30072 was bactericidal against both Acinetobacter spp. and P. aeruginosa, even against strains that produced metallo-β-lactamases that conferred resistance to all other β-lactams tested, including aztreonam. It was also active against many species of MDR isolates of the Enterobacteriaceae family, including isolates that had a class A carbapenemase or a metallo-β-lactamase. Unlike other monocyclic β-lactams, BAL30072 was found to trigger the spheroplasting and lysis of Escherichia coli rather than the formation of extensive filaments. The basis for this unusual property is its inhibition of the bifunctional penicillin-binding proteins PBP 1a and PBP 1b, in addition to its high affinity for PBP 3, which is the target of monobactams, such as aztreonam.


Sign in / Sign up

Export Citation Format

Share Document