scholarly journals Independent Behavior of Commensal Flora for Carriage of Fluoroquinolone-Resistant Bacteria in Patients at Admission

2010 ◽  
Vol 54 (12) ◽  
pp. 5193-5200 ◽  
Author(s):  
Victoire de Lastours ◽  
Françoise Chau ◽  
Florence Tubach ◽  
Blandine Pasquet ◽  
Etienne Ruppé ◽  
...  

ABSTRACT The important role of commensal flora as a natural reservoir of bacterial resistance is now well established. However, whether the behavior of each commensal flora is similar to that of other floras in terms of rates of carriage and risk factors for bacterial resistance is unknown. During a 6-month period, we prospectively investigated colonization with fluoroquinolone-resistant bacteria in the three main commensal floras from hospitalized patients at admission, targeting Escherichia coli in the fecal flora, coagulase-negative Staphylococcus (CNS) in the nasal flora, and α-hemolytic streptococci in the pharyngeal flora. Resistant strains were detected on quinolone-containing selective agar. Clinical and epidemiological data were collected. A total of 555 patients were included. Carriage rates of resistance were 8.0% in E. coli, 30.3% in CNS for ciprofloxacin, and 27.2% in streptococci for levofloxacin; 56% of the patients carried resistance in at least one flora but only 0.9% simultaneously in all floras, which is no more than random. Risk factors associated with the carriage of fluoroquinolone-resistant strains differed between fecal E. coli (i.e., colonization by multidrug-resistant bacteria) and nasal CNS (i.e., age, coming from a health care facility, and previous antibiotic treatment with a fluoroquinolone) while no risk factors were identified for pharyngeal streptococci. Despite high rates of colonization with fluoroquinolone-resistant bacteria, each commensal flora behaved independently since simultaneous carriage of resistance in the three distinct floras was uncommon, and risk factors differed. Consequences of environmental selective pressures vary in each commensal flora according to its local specificities (clinical trial NCT00520715 [http://clinicaltrials.gov/ct2/show/NCT00520715 ]).

2020 ◽  
Author(s):  
Yuan Hu ◽  
Julia Rubin ◽  
Kaitlyn Mussio ◽  
Lee W. Riley

AbstractBackgroundBacterial antimicrobial resistance is a serious global public health threat. Intestinal commensal drug-resistant bacteria have been suggested as an important reservoir of antimicrobial resistant genes (ARGs), which may be acquired via food. We aimed to identify risk factors associated with fecal carriage of drug-resistant commensal Escherichia coli (E. coli) among healthy adults focused on their dietary habit.MethodsWe conducted a cross-sectional study targeting healthy adult volunteers in a college community. Fecal samples and questionnaires were obtained from 113 volunteers. We conducted backward elimination logistic regression and least absolute shrinkage and selection (LASSO) methods to identify risk factors.ResultsWe analyzed responses from 81 of 113 volunteers who completed the questionnaire. The logistic regression and LASSO methods identified red meat consumption to be associated with increased risk (OR = 6.13 [1.83-24.2] and 1.82, respectively) and fish consumption with reduced risk (OR = 0.27 [0.08-0.85] and 0.82) for the carriage of multidrug-resistant E. coli, adjusted for gender, employment status, frequently-used supermarket, and previous travel.ConclusionsDietary habits are associated with the risk of fecal carriage of multidrug-resistant E. coli. This study supports the growing evidence that food may be an important source of ARGs present in human commensal E. coli.


Author(s):  
Seetha Panicker ◽  
T. V. Chitra

Background: Surgical site infections (SSI) are one of the major health problems throughout the world with an incidence of 3%-16%. Hospital acquired surgical site infection is further complicated by the emergence of multi drug resistant strains. SSI surveillance is an established monitoring tool and has been shown to reduce infection rates. The importance of preventing surgical site infections is well recognized since they lead to increased morbidity, prolonged hospital stay, need for readmission, high end antibiotic treatment and re-surgery. This study was undertaken to determine the incidence, risk factors, and microbiological spectrum of surgical site infections and to identify the multidrug resistant strains.  Analysis of the effectiveness of the existing surveillance methods was also done.Methods: This retrospective study was done for a period of 1-year form Jan 2016 to Dec 2016. All patients with infection following caesarean section and abdominal and vaginal hysterectomy were included. Laparoscopic surgery and patients with preexisting infection were excluded.Results: Incidence of SSI in present study is 5.27%. The major risk factors identified were obesity, diabetes and prolonged operating time.  The commonest infective organism was Klebsiella Pneumoniae in 37% of which 19% were ESBL producing and 3.8% were carbapenemase producing. E. coli was identified in 20% of isolates. The incidence of ESBL in both isolates was higher.Conclusions: Regular audit of SSIs is a very effective tool to analyse risk factors, identify causes and plan strategies to prevent infection.


Antibiotics ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 29 ◽  
Author(s):  
Larbi Zakaria Nabti ◽  
Farida Sahli ◽  
Hocine Laouar ◽  
Ahmed Olowo-okere ◽  
Joice Guileine Nkuimi Wandjou ◽  
...  

Antibiotics are becoming ineffective against resistant bacteria. The use of essential oils (EOs) may constitute an alternative solution to fight against multidrug-resistant bacteria. This study aims to determine the chemical composition of EOs from five populations of the endemic Algerian Origanum glandulosum Desf. and to investigate their potential antibacterial activity against multidrug-resistant uropathogenic E. coli strains. The EOs were obtained by hydrodistillation and their composition was investigated by gas chromatography/mass spectrometry (GC/MS). The antibacterial activity was evaluated by the disc diffusion method against eight E. coli strains (six uropathogenic resistant and two referenced susceptible strains). Minimum inhibitory and bactericidal concentrations (MIC/MBC) were obtained by the broth microdilution method. The main EO components were thymol (15.2–56.4%), carvacrol (2.8–59.6%), γ-terpinene (9.9–21.8%) and p-cymene (8.5–13.9%). The antibacterial tests showed that all the EOs were active against all the strains, including the multidrug-resistant strains. The EO from the Bordj location, which contained the highest amount of carvacrol (59.6%), showed the highest antibacterial activity (inhibition diameters from 12 to 24.5 mm at a dilution of 1/10). To our knowledge, this is the first description of the activity of O. glandulosum EOs against resistant uropathogenic strains. Our study suggests that O. glandulosum EO could be used in some clinical situations to treat or prevent infections (e.g., urinary tract infections) with multidrug-resistant strains.


Animals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 523 ◽  
Author(s):  
Maud de Lagarde ◽  
John M. Fairbrother ◽  
Julie Arsenault

Although antimicrobial resistance is an increasing threat in equine medicine, molecular and epidemiological data remain limited in North America. We assessed the prevalence of, and risk factors for, shedding multidrug-resistant (MDR) and extended-spectrum β-lactamase (ESBL) and/or AmpC β-lactamase-producing E. coli in healthy horses in Quebec, Canada. We collected fecal samples in 225 healthy adult horses from 32 premises. A questionnaire on facility management and horse medical history was completed for each horse. Indicator (without enrichment) and specific (following enrichment with ceftriaxone) E. coli were isolated and tested for antimicrobial susceptibility. The presence of ESBL/AmpC genes was determined by PCR. The prevalence of isolates that were non-susceptible to antimicrobials and to antimicrobial classes were estimated at the horse and the premises level. Multivariable logistic regression was used to assess potential risk factors for MDR and ESBL/AmpC isolates. The shedding of MDR E. coli was detected in 46.3% of horses. Non-susceptibility was most commonly observed to ampicillin, amoxicillin/clavulanic acid or streptomycin. ESBL/AmpC producing isolates were detected in 7.3% of horses. The most commonly identified ESBL/AmpC gene was blaCTX-M-1, although we also identified blaCMY-2. The number of staff and equestrian event participation were identified as risk factors for shedding MDR isolates. The prevalence of healthy horses harboring MDR or ESBL/AmpC genes isolates in their intestinal microbiota is noteworthy. We identified risk factors which could help to develop guidelines to preclude their spread.


Author(s):  
Kathleen M. Kurowski ◽  
Rachel Marusinec ◽  
Heather K. Amato ◽  
Carlos Saraiva-Garcia ◽  
Fernanda Loayza ◽  
...  

Extended-spectrum beta-lactamase-producing Enterobacteriaceae (ESBL), a family of bacteria that includes Escherichia coli, have emerged as a global health threat. This study examined risks associated with carriage of third-generation cephalosporin-resistant (3GC-R) E. coli, including ESBL-producing, multidrug-resistant, and extensively drug-resistant (XDR) strains in children living in semirural parishes of Quito, Ecuador. We conducted a longitudinal study with two cycles of sampling (N = 374, N = 366) that included an analysis of child fecal samples and survey questions relating to water, sanitation, and hygiene, socioeconomic status, household crowding, and animal ownership. We used multivariate regression models to assess risk factors associated with a child being colonized. Across the two cycles, 18.4% (n = 516) of the 3GC-R isolates were ESBL-producing E. coli, and 40.3% (n = 516) were XDR E. coli. Children living in households that owned between 11 and 20 backyard animals had an increased odds of being colonized with XDR E. coli (odds ratio [OR] = 1.94, 95% confidence interval [CI]: 1.05–3.60) compared with those with no animals. Households that reported smelling odors from commercial poultry had increased odds of having a child positive for XDR E. coli (OR = 1.72, 95% CI: 1.11–2.66). Our results suggest that colonization of children with antimicrobial-resistant E. coli is influenced by exposure to backyard and commercial livestock and poultry. Future studies should consider community-level risk factors because child exposures to drug-resistant bacteria are likely influenced by neighborhood and regional risk factors.


2015 ◽  
Vol 36 (4) ◽  
pp. 394-400 ◽  
Author(s):  
Ina Willemsen ◽  
Jolande Nelson ◽  
Yvonne Hendriks ◽  
Ans Mulders ◽  
Sandrien Verhoeff ◽  
...  

OBJECTIVERisk factors for rectal carriage of ESBL-E and transmission were investigated in an outbreak of extended-spectrum β-lactamase–producing Enterobacteriaceae (ESBL-E).DESIGNRectal carriage of ESBL-E was determined in a cross-sectional survey by culture of perianal swabs or fecal samples. Both phenotypical and genotypical methods were used to detect the production of ESBL. Nosocomial transmission was defined as the presence of genotypically related strains in ≥2 residents within the NH. Patient characteristics and variables in infection control practices were registered to investigate risk factors for transmission.SETTINGA nursing home (NH) in the southern Netherlands.PARTICIPANTSOf 189 residents, 160 residents (84.7%) were screened for ESBL-E carriage. Of these 160 residents, 33 (20.6%) were ESBL-E positive. ESBL carriage rates varied substantially between wards (range, 0–47%). Four different ESBL-E clusters were observed. AblaCTX-M1-15positiveE. coliST131 constituted the largest cluster (n=21) and was found in multiple wards (n=7).RESULTSOur investigation revealed extensive clonal dissemination ofblaCTX-M1-15-positiveE. coliST131 in a nursing home. Unexplained differences in ESBL prevalence were detected among the wards.CONCLUSIONSAs NHs constitute potential sources of multidrug-resistant bacteria, it is important to gain a better understanding of the risks factors and routes of transmission of ESBL-E.Infect Control Hosp Epidemiol 2014;00(0): 1–7


Antibiotics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 466
Author(s):  
Herbert Galler ◽  
Josefa Luxner ◽  
Christian Petternel ◽  
Franz F. Reinthaler ◽  
Juliana Habib ◽  
...  

In recent years, antibiotic-resistant bacteria with an impact on human health, such as extended spectrum β-lactamase (ESBL)-containing Enterobacteriaceae, methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococci (VRE), have become more common in food. This is due to the use of antibiotics in animal husbandry, which leads to the promotion of antibiotic resistance and thus also makes food a source of such resistant bacteria. Most studies dealing with this issue usually focus on the animals or processed food products to examine the antibiotic resistant bacteria. This study investigated the intestine as another main habitat besides the skin for multiresistant bacteria. For this purpose, faeces samples were taken directly from the intestines of swine (n = 71) and broiler (n = 100) during the slaughter process and analysed. All samples were from animals fed in Austria and slaughtered in Austrian slaughterhouses for food production. The samples were examined for the presence of ESBL-producing Enterobacteriaceae, MRSA, MRCoNS and VRE. The resistance genes of the isolated bacteria were detected and sequenced by PCR. Phenotypic ESBL-producing Escherichia coli could be isolated in 10% of broiler casings (10 out of 100) and 43.6% of swine casings (31 out of 71). In line with previous studies, the results of this study showed that CTX-M-1 was the dominant ESBL produced by E. coli from swine (n = 25, 83.3%) and SHV-12 from broilers (n = 13, 81.3%). Overall, the frequency of positive samples with multidrug-resistant bacteria was lower than in most comparable studies focusing on meat products.


Life ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 601
Author(s):  
Caterina Aurilio ◽  
Pasquale Sansone ◽  
Antonella Paladini ◽  
Manlio Barbarisi ◽  
Francesco Coppolino ◽  
...  

Coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2, is often complicated by severe acute respiratory syndrome. The new coronavirus outbreak started in China in December 2019 and rapidly spread around the world. The high diffusibility of the virus was the reason for the outbreak of the pandemic viral disease, reaching more than 100 million infected people globally by the first three months of 2021. In the various treatments used up to now, the use of antimicrobial drugs for the management, especially of bacterial co-infections, is very frequent in patients admitted to intensive care. In addition, critically ill patients with SARS-CoV-2 infection are subjected to prolonged mechanical ventilation and other therapeutic procedures often responsible for developing hospital co-infections due to multidrug-resistant bacteria. Co-infections contribute to the increase in the morbidity–mortality of viral respiratory infections. We performed this study to review the recent articles published on the antibiotic bacterial resistance and viruses to predict risk factors of coronavirus disease 2019 and to assess the multidrug resistance in patients hospitalized in the COVID-19 area.


Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 312
Author(s):  
Mohammad Okkeh ◽  
Nora Bloise ◽  
Elisa Restivo ◽  
Lorenzo De Vita ◽  
Piersandro Pallavicini ◽  
...  

In 2017 the World Health Organization (WHO) announced a list of the 12 multidrug-resistant (MDR) families of bacteria that pose the greatest threat to human health, and recommended that new measures should be taken to promote the development of new therapies against these superbugs. Few antibiotics have been developed in the last two decades. Part of this slow progression can be attributed to the surge in the resistance acquired by bacteria, which is holding back pharma companies from taking the risk to invest in new antibiotic entities. With limited antibiotic options and an escalating bacterial resistance there is an urgent need to explore alternative ways of meeting this global challenge. The field of medical nanotechnology has emerged as an innovative and a powerful tool for treating some of the most complicated health conditions. Different inorganic nanomaterials including gold, silver, and others have showed potential antibacterial efficacies. Interestingly, gold nanoparticles (AuNPs) have gained specific attention, due to their biocompatibility, ease of surface functionalization, and their optical properties. In this review, we will focus on the latest research, done in the field of antibacterial gold nanoparticles; by discussing the mechanisms of action, antibacterial efficacies, and future implementations of these innovative antibacterial systems.


Sign in / Sign up

Export Citation Format

Share Document