scholarly journals Fungal Seed Endophyte FZT214 Improves Dysphania ambrosioides Cd Tolerance Throughout Different Developmental Stages

2022 ◽  
Vol 12 ◽  
Author(s):  
Shobhika Parmar ◽  
Vijay K. Sharma ◽  
Tao Li ◽  
Wenting Tang ◽  
Haiyan Li

Phytoremediation is a promising remediation method of heavy metal (HM)–contaminated soils. However, lower HM tolerance of metal accumulator inhibits its practical application and effects. The current study was aimed to illustrate the role of fungal seed endophyte (FZT214) in improving Dysphania ambrosioides Cd tolerance during different developmental stages under various Cd stresses (5, 15, 30 mg kg–1) by pot experiments. The results showed that FZT214 significantly (p < 0.05) improved the host plant’s growth at the flowering and fruiting stage in most of the treatment, while at the growing stage the increase was less (p > 0.05). The seed yield was also improved (p < 0.05) in the FZT214-inoculated plants (E+) and induced early flowering was observed. Moreover, the inoculation also positively affected total chlorophyll content, antioxidant process, and lipid peroxidation in most of the treatments throughout three developmental stages. Not all but in most cases, IAA and GA were more in E+ plants while JA was more in the E− plants (non-inoculated plants) during three developmental stages. The results suggested that the colonization of FZT214 to the D. ambrosioides might trigger multiple and comprehensive protective strategies against Cd stress, which mainly include activation of the dilution effects, induced biochemical changes to overcome damage from Cd toxicity, and alteration of the endogenous phytohormones. FZT214 can find competent application in the future to improve the growth of other crop plants.

Biologia ◽  
2013 ◽  
Vol 68 (1) ◽  
Author(s):  
Xiao Wang ◽  
Zhong-Wei Zhang ◽  
Shi-Hua Tu ◽  
Wen-Qiang Feng ◽  
Fei Xu ◽  
...  

AbstractCadmium (Cd) has been identified as a significant pollutant due to its high solubility in water and soil and high toxicity to plants and animals. Rice, as one of the most important food crops, is grown in soils with variable levels of Cd and therefore, is important to discriminate the Cd tolerance of different rice cultivars to determine their suitability for cultivation in Cd-contaminated soils. This study investigates the primary mechanisms employed by four rice cultivars in attaining Cd tolerance. HA63 cultivar reduces Cd uptake by increasing Fe absorption through activation of phytosiderophores. T3028 cultivar accumulates the highest level of Cd in leaves while also activating its reactive oxygen species (ROS) scavenging system, including antioxidant enzymes and phytochelatins. In some rice cultivars (such as HA63), a cyanide-resistant respiration mechanism, important in Cd detoxification, was also promoted under the Cd stress. In conclusion, different rice cultivars may adopt different biochemical strategies and respond with different efficiency to Cd stress.


Antioxidants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1812
Author(s):  
Aya Mahmoud ◽  
Hamada AbdElgawad ◽  
Badreldin A. Hamed ◽  
Gerrit T.S. Beemster ◽  
Nadia M. El-Shafey

Cadmium (Cd), a readily absorbed and translocated toxic heavy metal, inhibits plant growth, interrupts metabolic homeostasis and induces oxidative damage. Responses towards Cd-stress differ among plant cultivars, and the complex integrated relationships between Cd accumulation, detoxification mechanisms and antioxidant defenses still need to be unraveled. To this end, 12 Egyptian maize cultivars were grown under Cd-stress to test their Cd-stress tolerance. Out of these cultivars, tolerant (TWC360 and TWC321), moderately sensitive (TWC324) and sensitive (SC128) cultivars were selected, and we determined their response to Cd in terms of biomass, Cd accumulation and antioxidant defense system. The reduction in biomass was highly obvious in sensitive cultivars, while TWC360 and TWC321 showed high Cd-tolerance. The cultivar TWC321 showed lower Cd uptake concurrently with an enhanced antioxidant defense system. Interestingly, TWC360 accumulated more Cd in the shoot, accompanied with increased Cd detoxification and sequestration. A principal component analysis revealed a clear separation between the sensitive and tolerant cultivars with significance of the antioxidant defenses, including superoxide dismutase (SOD). To confirm the involvement of SOD in Cd-tolerance, we studied the effect of Cd-stress on a transgenic maize line (TG) constitutively overexpressing AtFeSOD gene in comparison to its wild type (WT). Compared to their WT, the TG plants showed less Cd accumulation and improved growth, physiology, antioxidant and detoxification systems. These results demonstrate the role of SOD in determining Cd-tolerance.


Toxics ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 182
Author(s):  
Ruchi Bansal ◽  
Swati Priya ◽  
Harsh Kumar Dikshit ◽  
Sherry Rachel Jacob ◽  
Mahesh Rao ◽  
...  

Cadmium (Cd) is a hazardous heavy metal, toxic to our ecosystem even at low concentrations. Cd stress negatively affects plant growth and development by triggering oxidative stress. Limited information is available on the role of iron (Fe) in ameliorating Cd stress tolerance in legumes. This study assessed the effect of Cd stress in two lentil (Lens culinaris Medik.) varieties differing in seed Fe concentration (L4717 (Fe-biofortified) and JL3) under controlled conditions. Six biochemical traits, five growth parameters, and Cd uptake were recorded at the seedling stage (21 days after sowing) in the studied genotypes grown under controlled conditions at two levels (100 μM and 200 μM) of cadmium chloride (CdCl2). The studied traits revealed significant genotype, treatment, and genotype × treatment interactions. Cd-induced oxidative damage led to the accumulation of hydrogen peroxide (H2O2) and malondialdehyde in both genotypes. JL3 accumulated 77.1% more H2O2 and 75% more lipid peroxidation products than L4717 at the high Cd level. Antioxidant enzyme activities increased in response to Cd stress, with significant genotype, treatment, and genotype × treatment interactions (p < 0.01). L4717 had remarkably higher catalase (40.5%), peroxidase (43.9%), superoxide dismutase (31.7%), and glutathione reductase (47.3%) activities than JL3 under high Cd conditions. In addition, L4717 sustained better growth in terms of fresh weight and dry weight than JL3 under stress. JL3 exhibited high Cd uptake (14.87 mg g−1 fresh weight) compared to L4717 (7.32 mg g−1 fresh weight). The study concluded that the Fe-biofortified lentil genotype L4717 exhibited Cd tolerance by inciting an efficient antioxidative response to Cd toxicity. Further studies are required to elucidate the possibility of seed Fe content as a surrogacy trait for Cd tolerance.


Biosensors ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 246
Author(s):  
Patrick Severin Sfragano ◽  
Giulia Moro ◽  
Federico Polo ◽  
Ilaria Palchetti

Peptides represent a promising class of biorecognition elements that can be coupled to electrochemical transducers. The benefits lie mainly in their stability and selectivity toward a target analyte. Furthermore, they can be synthesized rather easily and modified with specific functional groups, thus making them suitable for the development of novel architectures for biosensing platforms, as well as alternative labelling tools. Peptides have also been proposed as antibiofouling agents. Indeed, biofouling caused by the accumulation of biomolecules on electrode surfaces is one of the major issues and challenges to be addressed in the practical application of electrochemical biosensors. In this review, we summarise trends from the last three years in the design and development of electrochemical biosensors using synthetic peptides. The different roles of peptides in the design of electrochemical biosensors are described. The main procedures of selection and synthesis are discussed. Selected applications in clinical diagnostics are also described.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Fang Li ◽  
Zaichao Zheng ◽  
Hongyu Li ◽  
Rongrong Fu ◽  
Limei Xu ◽  
...  

AbstractDespite the central role of hemocytes in crustacean immunity, the process of hemocyte differentiation and maturation remains unclear. In some decapods, it has been proposed that the two main types of hemocytes, granular cells (GCs) and semigranular cells (SGCs), differentiate along separate lineages. However, our current findings challenge this model. By tracking newly produced hemocytes and transplanted cells, we demonstrate that almost all the circulating hemocytes of crayfish belong to the GC lineage. SGCs and GCs may represent hemocytes of different developmental stages rather than two types of fully differentiated cells. Hemocyte precursors produced by progenitor cells differentiate in the hematopoietic tissue (HPT) for 3 ~ 4 days. Immature hemocytes are released from HPT in the form of SGCs and take 1 ~ 3 months to mature in the circulation. GCs represent the terminal stage of development. They can survive for as long as 2 months. The changes in the expression pattern of marker genes during GC differentiation support our conclusions. Further analysis of hemocyte phagocytosis indicates the existence of functionally different subpopulations. These findings may reshape our understanding of crustacean hematopoiesis and may lead to reconsideration of the roles and relationship of circulating hemocytes.


Biochar ◽  
2021 ◽  
Author(s):  
Qian Yang ◽  
Yongjie Wang ◽  
Huan Zhong

AbstractThe transformation of mercury (Hg) into the more toxic and bioaccumulative form methylmercury (MeHg) in soils and sediments can lead to the biomagnification of MeHg through the food chain, which poses ecological and health risks. In the last decade, biochar application, an in situ remediation technique, has been shown to be effective in mitigating the risks from Hg in soils and sediments. However, uncertainties associated with biochar use and its underlying mechanisms remain. Here, we summarize recent studies on the effects and advantages of biochar amendment related to Hg biogeochemistry and its bioavailability in soils and sediments and systematically analyze the progress made in understanding the underlying mechanisms responsible for reductions in Hg bioaccumulation. The existing literature indicates (1) that biochar application decreases the mobility of inorganic Hg in soils and sediments and (2) that biochar can reduce the bioavailability of MeHg and its accumulation in crops but has a complex effect on net MeHg production. In this review, two main mechanisms, a direct mechanism (e.g., Hg-biochar binding) and an indirect mechanism (e.g., biochar-impacted sulfur cycling and thus Hg-soil binding), that explain the reduction in Hg bioavailability by biochar amendment based on the interactions among biochar, soil and Hg under redox conditions are highlighted. Furthermore, the existing problems with the use of biochar to treat Hg-contaminated soils and sediments, such as the appropriate dose and the long-term effectiveness of biochar, are discussed. Further research involving laboratory tests and field applications is necessary to obtain a mechanistic understanding of the role of biochar in reducing Hg bioavailability in diverse soil types under varying redox conditions and to develop completely green and sustainable biochar-based functional materials for mitigating Hg-related health risks.


Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 912
Author(s):  
Shuming Liu ◽  
Hongmei Liu ◽  
Rui Chen ◽  
Yong Ma ◽  
Bo Yang ◽  
...  

Miscanthus spp. are energy plants and excellent candidates for phytoremediation approaches of metal(loid)s-contaminated soils, especially when combined with plant growth-promoting bacteria. Forty-one bacterial strains were isolated from the rhizosphere soils and roots tissue of five dominant plants (Artemisia argyi Levl., Gladiolus gandavensis Vaniot Houtt, Boehmeria nivea L., Veronica didyma Tenore, and Miscanthus floridulus Lab.) colonizing a cadmium (Cd)-contaminated mining area (Huayuan, Hunan, China). We subsequently tested their plant growth-promoting (PGP) traits (e.g., production of indole-3-acetic acid, siderophore, and 1-aminocyclopropane-1-carboxylate deaminase) and Cd tolerance. Among bacteria, two strains, Klebsiella michiganensis TS8 and Lelliottia jeotgali MR2, presented higher Cd tolerance and showed the best results regarding in vitro growth-promoting traits. In the subsequent pot experiments using soil spiked with 10 mg Cd·kg−1, we investigated the effects of TS8 and MR2 strains on soil Cd phytoremediation when combined with M. floridulus (Lab.). After sixty days of planting M. floridulus (Lab.), we found that TS8 increased plant height by 39.9%, dry weight of leaves by 99.1%, and the total Cd in the rhizosphere soil was reduced by 49.2%. Although MR2 had no significant effects on the efficiency of phytoremediation, it significantly enhanced the Cd translocation from the root to the aboveground tissues (translocation factor > 1). The combination of K. michiganensis TS8 and M. floridulus (Lab.) may be an effective method to remediate Cd-contaminated soils, while the inoculation of L. jeotgali MR2 may be used to enhance the phytoextraction potential of M. floridulus.


Author(s):  
Millissia Ben Maamar ◽  
Eric E Nilsson ◽  
Michael K Skinner

Abstract One of the most important developing cell types in any biological system is the gamete (sperm and egg). The transmission of phenotypes and optimally adapted physiology to subsequent generations is in large part controlled by gametogenesis. In contrast to genetics, the environment actively regulates epigenetics to impact the physiology and phenotype of cellular and biological systems. The integration of epigenetics and genetics is critical for all developmental biology systems at the cellular and organism level. The current review is focused on the role of epigenetics during gametogenesis for both the spermatogenesis system in the male and oogenesis system in the female. The developmental stages from the initial primordial germ cell through gametogenesis to the mature sperm and egg are presented. How environmental factors can influence the epigenetics of gametogenesis to impact the epigenetic transgenerational inheritance of phenotypic and physiological change in subsequent generations is reviewed.


2002 ◽  
Vol 48 (4) ◽  
pp. 526-552 ◽  
Author(s):  
Barbara Bloom ◽  
Barbara Owen ◽  
Elizabeth Piper Deschenes ◽  
Jill Rosenbaum

This article reports findings from a survey of officials from various California state agencies and a series of interviews and focus groups with female youth and professionals serving this population. The study examined types of services provided, program barriers, and facilitation of change. The findings were used to make gender-specific policy and program recommendations. The authors found that meeting the needs of girls and young women requires specialized staffing and training, particularly in terms of relationship and communication skills, gender differences in delinquency, substance abuse education, the role of abuse, developmental stages of female adolescence, and available programs and appropriate placements and limitations. Effective programming for girls and women should be shaped by and tailored to their real-world situations and problems. In order to do this, a theoretical approach to treatment that is gender-sensitive and that addresses the realities of girls' lives must be developed.


Sign in / Sign up

Export Citation Format

Share Document