scholarly journals Co-occurrence Interaction Networks of Extremophile Species Living in a Copper Mining Tailing

2022 ◽  
Vol 12 ◽  
Author(s):  
Gabriel Galvez ◽  
Jaime Ortega ◽  
Fernanda Fredericksen ◽  
Victor Aliaga-Tobar ◽  
Valentina Parra ◽  
...  

Copper mining tailings are characterized by high concentrations of heavy metals and an acidic pH, conditions that require an extreme adaptation for any organism. Currently, several bacterial species have been isolated and characterized from mining environments; however, very little is known about the structure of microbial communities and how their members interact with each other under the extreme conditions where they live. This work generates a co-occurrence network, representing the bacterial soil community from the Cauquenes copper tailing, which is the largest copper waste deposit worldwide. A representative sampling of six zones from the Cauquenes tailing was carried out to determine pH, heavy metal concentration, total DNA extraction, and subsequent assignment of Operational Taxonomic Units (OTUs). According to the elemental concentrations and pH, the six zones could be grouped into two sectors: (1) the “new tailing,” characterized by neutral pH and low concentration of elements, and (2) the “old tailing,” having extremely low pH (~3.5) and a high concentration of heavy metals (mainly copper). Even though the abundance and diversity of species were low in both sectors, the Pseudomonadaceae and Flavobacteriaceae families were over-represented. Additionally, the OTU identifications allowed us to identify a series of bacterial species with diverse biotechnological potentials, such as copper bioleaching and drought stress alleviation in plants. Using the OTU information as a template, we generated co-occurrence networks for the old and new tailings. The resulting models revealed a rearrangement between the interactions of members living in the old and new tailings, and highlighted conserved bacterial drivers as key nodes, with positive interactions in the network of the old tailings, compared to the new tailings. These results provide insights into the structure of the soil bacterial communities growing under extreme environmental conditions in mines.

Author(s):  
MdDidarul Islam, Ashiqur Rahaman, Aboni Afrose

This study was based on determining concentration of essential and toxic heavy metal in coconut water available at a local Hazaribagh area in Dhaka, Bangladesh. All essential minerals, if present in the drinking water at high concentration or very low concentration, it has negative actions. In this study, fifteen samples and eight heavy metals were analyzed by Atomic Absorption Spectroscopy (AAS) method which was followed by wet ashing digestion method. The concentration obtained in mg/l were in the range of 0.3 to 1.5, 7.77 to 21.2, 0 to 0.71, 0 to 0.9, 0 to 0.2, 0.9 to 17.3, 0.1 to 0.9, 0 to 0.9 and 0 to 0.7 for Fe, Ni, Cu, Cd, Cr, Zn, Pb and Se respectively. From this data it was concluded that any toxic heavy metals like Cd, Cr, Pb and Ni exceed their toxicity level and some essential nutrients were in low concentration in those samples. 


2017 ◽  
Vol 43 (2) ◽  
pp. 207-222 ◽  
Author(s):  
MN Mondol ◽  
A Asia ◽  
AS Chamon ◽  
SMA Faiz

An investigation was made at Hazaribagh Tannery area, comprising about 145 industries in Dhaka Metropolitan area. The analyses of soil and plant samples showed that heavy metals contribute significantly towards environmental contamssination resulting from industrial activities. Concentration of heavy metals (Cr, Zn, Pb, Cd, Mn, Fe and Ni) in soil and plant samples cross the MAC (Maximum allowable concentration) in both wet and dry season. In case of soil sample the highest concentration of Cr (172792 ppm) was found at main disposal point. Chromium, Zn, Pb, Cd, Mn, Fe and Ni concentrations at Hazaribagh plant samples respectively ranged from 171-1348, 247-777, 45-96, 1.66-2.17, 72-231, 354-787, and 18-38 ppm respectively in dry season and 75-1142, 209-691, 29- 84, 1.02-2.00, 66-124, 331-664, 11-37 ppm respectively in wet season. Concentration went down gradually with increasing distance from the main disposal point (spot 1). But again high concentration (150708 ppm of Cr) was noted in spot 6. Similar results were found for plant samples. High concentrations of heavy metals were found in plant samples which consequently affect food chain, which may be a major environmental concern. Asiat. Soc. Bangladesh, Sci. 43(2): 207-222, December 2017


2001 ◽  
Vol 61 (3) ◽  
pp. 363-370 ◽  
Author(s):  
A. C. RIETZLER ◽  
A. L. FONSECA ◽  
G. P. LOPES

A great amount of heavy metals enter Pampulha Reservoir via it's main tributaries (Sarandi and Ressaca). Although no water quality classification has been carried out for these tributaries, the reservoir is expected to be in class 2 of the CONAMA-86 system. As part of a monitoring scheme of the Pampulha Watershed, heavy metals (Zn, Pb, Cd, Ni, Cu, Cr, Mn and Fe) were investigated in the water at a control site (considered free from direct human influence) and at potential sites of toxicity and contamination during August (dry season) and November (wet season) of 1998. The results for the first sampling period showed relatively high concentrations of zinc (0.22 mg.L<FONT FACE=Symbol>-</FONT>1) in the upper portion of the reservoir. The highest values of nickel and chromium (0.19 and 0.89 mg.L<FONT FACE=Symbol>-</FONT>1, respectively) were found in the initial portion of the Sarandi Stream, while the highest concentrations of lead (0.05 mg.L<FONT FACE=Symbol>-</FONT>1), cadmium (0.014 mg.L<FONT FACE=Symbol>-</FONT>1), manganese (0.43 mg.L<FONT FACE=Symbol>-</FONT>1) and iron (15.25 mg.L<FONT FACE=Symbol>-</FONT>1) were detected in the Ressaca Stream by the landfill dump of Belo Horizonte. A relatively high concentration of cadmium was also detected at the confluence of the two streams. During the second sampling period, there was an increase in the concentrations of zinc at all sampling sites except the control, with values varying from 0.71 mg.L<FONT FACE=Symbol>-</FONT>1 (the Sarandi Stream) to 2.50 mg.L<FONT FACE=Symbol>-</FONT>1 (the Ressaca Stream). Lead, cadmium, nickel and chromium concentrations were also higher in the Ressaca Stream, but not detected at the other sampling sites. Copper values were higher than in the first period: 0.10 mg.L<FONT FACE=Symbol>-</FONT>1 at the control up to 0.38 mg.L<FONT FACE=Symbol>-</FONT>1 at the confluence of the streams. Similar results were found for manganese and iron, with values reaching up to 19.30 and 125 mg.L<FONT FACE=Symbol>-</FONT>1, respectively. Moreover, all values recorded in the second sampling period were much higher than recommended for class 2 waters. These results emphasize the need for such monitoring in relation to better water quality management of this reservoir.


2021 ◽  
Vol 12 ◽  
Author(s):  
Qian Zhang ◽  
Shumin Wang ◽  
Xinyu Zhang ◽  
Ruiling Zhang ◽  
Zhong Zhang

High concentrations of Pseudomonas aeruginosa Y12 significantly inhibit the development of housefly larvae and accelerate larvae death. In this study, the dynamic distribution of the gut microbiota of housefly larvae fed different concentrations of P. aeruginosa Y12 was investigated. Compared with low-concentration P. aeruginosa diets, orally administered high-concentration P. aeruginosa diets caused higher mortality and had a greater impact on the community structure and interaction network of intestinal flora in housefly larvae. The bacterial community of the gut microbiota in housefly larvae was reconstructed in 4 days. Bacterial abundance and diversity were significantly reduced in housefly larvae fed high concentrations of P. aeruginosa. With the growth of larvae, the relative abundances of Providencia, Proteus, Myroides, Klebsiella, and Alcaligenes increased significantly in housefly larvae fed with high concentrations of P. aeruginosa, while the relative abundances of Bordetella, Enterobacter, Morganella, Ochrobactrum, Alcaligenaceae, and Empedobacter were significantly reduced. To analyze the role of the gut microorganisms played on housefly development, a total of 10 cultivable bacterial species belonging to 9 genera were isolated from the intestine of housefly larvae among which Enterobacter hormaechei, Klebsiella pneumoniae, Enterobacter cloacae, Lysinibacillus fusiformis, and Bacillus safensis promoted the growth of larvae through feeding experiments. This study is the first to analyze the influence of high concentrations of P. aeruginosa on the gut microbiota of houseflies. Our study provides a basis for exploring the pathogenic mechanism of high concentrations of P. aeruginosa Y12 in houseflies.


2017 ◽  
Vol 2 (3) ◽  
pp. 156
Author(s):  
S.A. Bhutada ◽  
S.B. Dahikar

At present various microorganisms are used for bioremediation of heavy metals from soil and water bodies. The aim of present work was to isolate the potential heavy metal degrading organisms and to apply for bioremediation of heavy metals from the domestic as well as industrial waste. The study involves the isolation of the bacterial species residing the natural habitat of such environments and screening of these isolates to degrade different heavy metals such as Cu, Cd, Hg, Ni, and Zn  up to the concentration 2000 ppm. There were six bacterial potential isolates  found namely Pseudomonas spp., (3), Achromobacter spp., Uncultured Microbacterium spp., and Exigoubacterium spp., which showing the growth up to the concentration of 2000 ppm. The potency of the six potential isolates was determined by using the conventional plate count technique.  The percentage removal of analyzed by the use of ICP-AES technique. The study shows isolation of the species which can remove heavy metal up to 60%. It was also found that the increase in the incubation time causes more reduction in the heavy metal concentration. The mutational analysis of the isolates for the strain improvement process shows that the Exigoubacterium species can grow at 3000 ppm heavy metal concentration and showed 60% reduction in heavy metal. This highly potential species can be used for the removal of different heavy metals which is also a viable, eco friendly and cost effective technology for cleanup of the environment. 


2021 ◽  
Author(s):  
Marcin Woch ◽  
Grzegorz ◽  
Iwona Jedrzejczyk ◽  
Marek Podsiedlik ◽  
Anna Stefanowicz

Abstract Heavy metals can affect the morphology, physiology and evolution of plants. Asplenium viride is a diploid species, belonging to the largest genus of the cosmopolitan fern family Aspleniaceae, and occurring on various types of alkaline rocks. It is known to colonize sites with high concentrations of heavy metals, exhibiting changes in frond morphology. Microevolutionary processes, manifesting as changes in genome size and new genotype formation, can ultimately lead to the formation of new subspecies and speciation. This study aimed to evaluate the morphological and genetic diversity of A. viride, and to test for a potential correlation between variability and heavy metal concentration. Analysis of A. viride specimens, from one metalliferous site and five non-metalliferous localities, showed no apparent variation in genome size between plants from affected and non-affected sites. There was no significant correlation between genetic variability and heavy metal concentration. This was possibly due to intragametophytic selfing, caused by patchy habitats and subsequent founder effects, resulting from long-distance colonization by single spores.


2020 ◽  
Vol 12 (3) ◽  
pp. 1263 ◽  
Author(s):  
Shuai Gu ◽  
Bitian Fu ◽  
Ji Whan Ahn

Spent electrolyte from lead-acid battery contains high concentrations of sulfate acid and heavy metals; therefore without proper handling, they might cause severe environmental pollution. A relatively high concentration of sulfate ions (approximately 3000 mg/L) and heavy metals still exists in the effluent even after precipitation with slaked lime and carbonation process, which need to be further processed to lower both the concentrations of sulfate and heavy metals for direct discharge. A process that involves the reduction of sulfate to sulfide with sulfate-reducing bacteria and precipitation of the excessive sulfide with Fe(OH)2 was adopted to dispose of the effluent after precipitation and carbonation for direct discharge. Thermodynamic calculations were adopted to narrow down the optimum experimental range and understand the precipitation mechanism. In the whole process, no new impurities nor ions were introduced and 99.2% of sulfate, 99.9% of sulfide, 99.1% of Ca and more than 94.6% of Pb and 99.8% of Cd were removed and the obtained effluent was safe to discharge.


Author(s):  
Aderonke Omolara LAWAL-ARE ◽  
Rasheed Olatunji MORUF ◽  
Sarah Oyeyinka OLUSEYE-ARE ◽  
Tajudeen Opeyemi ISOLA

The ecological health status of aquatic environment is a determinant for the survival and growth of organisms within such niche. An investigative study was carried out on four crab species – Cardiosoma armatum, Goniopsis pelli, Callinectes amnicola, Portunus validusinhabiting contaminated sites in Lagos Lagoon- exploring their anti-oxidant defense mechanism in the light of heavy metal concentration in the crab tissues. Amongst the measured heavy metals, cadmium level proved to be significantly highest (P<0.05) with range concentration of 0.42±0.12mg/kg (G. pelli)- 0.79±0.06 mg/kg (C. armatum). Contrastingly, lead was marginally low with concentration below 0.01 mg/kg in all the crab species. Organismal responses to environmental pollution showed a high level of biomarkers. C. armatum was observed to have elevated level of superoxide dismutase (123.04±0.01min/mg/pro), catalase (7.74±0.05min/mg/pro), glutathion transferase (18.21±0.02 Hmol/mg pro), reduced glutathione (2.92±0.04Hmol/mg pro) and glutathione peroxidase (61.85±0.06 Hmol/mg pro) above other species with C. amnicola recording the lowest concentration of the biomarkers. With the low level of heavy metals and corresponding high concentration of these biomarkers, the pollution indices within the study habitat are quite modest.


2014 ◽  
Vol 27 ◽  
pp. 1-13
Author(s):  
O.T. Ogunmodede ◽  
A.A. Ojo ◽  
O.L. Adebayo

The field study involved 4 sites and 15 samples according to the wind directions: North, East, South and West. The analysis was conducted through the use of Atomic Absorption spectroscopy (AAS). Ten types of heavy metals were identified as indicators for pollution namely Mg, Ca, Mn, Fe, Cu, Zn, Pb, Ni, Cr, and Cd. The results indicated that the concentration of Fe was the most dominant per specific distances and depths and exceeded the minimum standard in North, East and West directions. While Cu was the second most dominant with concentration exceeding minimum standard per specific distance and depth, mainly in the West direction. The results have shown presence of bacterial species including Pseudomonas, Mirococcus, Actinomyces, Neisseria, Bacillus and Klebsiella. These pathogens can infect wounds and cause sepsis and mortality and can even occur with such organisms to cause secondary infection. These groups of organisms are almost impossible to control since they are ubitiquous


2016 ◽  
Vol 18 (1) ◽  
pp. 214-222 ◽  

<p>Ultramafics represent magmatic or metamorphic rocks which are characterized by high concentrations of Mg, Fe, Ni, Cr and Co and low concentrations of Ca, and K. Serpentine soils are weathered products of a range of ultramafic rocks composed of ferromagnesian silicates. The aim of this study was to determine the content of heavy metals in some of serpentine soils of Kosovo and heavy metals uptake by entire associated flora. Furthermore, another objective of this study was finding out bioavailable Ca/Mg relationship, which is very important indicator for plants&rsquo; development. The sampling was conducted in June 2014. A total of three serpentine areas have been surveyed and 7 soil samples have been taken in various depths of soil profiles. Those samples were analyzed for total Ca, Cd, Co, Cr, Cu, Mn, Ni, Pb, Fe and Zn. Results showed that each site exhibited a high concentration of at least one metal. The maximum concentrations of metals in soils Dry Matter (DM) were 108.9 mg kg<sup>-1</sup> Cd, 95.8 mg kg<sup>-1</sup> Co, 1206 mg kg<sup>-1</sup> Cr, 24 mg kg<sup>-1</sup> Cu, 2570 mg kg<sup>-1</sup> Ni, 21.7 mg kg<sup>-1</sup> Pb, 39 mg kg<sup>-1</sup> Zn, and 51563 mg kg<sup>- </sup>Fe. The serpentine soils at all sites were characterized by elevated levels of heavy metals, which showed typical properties of ultramafic environments. Nickel Total at studied areas varied between 1543 and 2570 mg kg<sup>-1</sup>, while the highest Ni concentration was found in aerial part of Alyssum markgrafii (4038 mgkg<sup>-1</sup>),</p> <div> <p>Based on our findings on the field we concluded that there is a close relationship between the quantity of Ni in soil and Ni uptake in plants.</p> </div> <p>&nbsp;</p>


Sign in / Sign up

Export Citation Format

Share Document