scholarly journals Valproic Acid Protects Chondrocytes from LPS-Stimulated Damage via Regulating miR-302d-3p/ITGB4 Axis and Mediating the PI3K-AKT Signaling Pathway

2021 ◽  
Vol 8 ◽  
Author(s):  
Long Sun ◽  
Wei Zheng ◽  
Qian-Dong Liu ◽  
Lei Ge

Background: Osteoarthritis (OA) is one of the most common degenerative joint diseases characterized by increased apoptosis and autophagy deficiency. The investigation was performed to examine the effect of valproic acid (VPA) and molecular mechanism related to miR-302d-3p/ITGB4 axis in OA.Methods: The OA clinical samples were obtained from the GEO database to analyze differentially expressed genes. An in vitro OA model was mimicked by LPS in CHON-001 cells. Autophagy-related genes were downloaded from the HADb website, and potential drugs were mined using the CTD website. The upstream factors of ITGB4 were predicted with bioinformatics analysis, which was validated by luciferase activity assay and RIP assay. Cell viability and apoptosis were evaluated using CCK-8 and flow cytometry. The expression levels, including ITGB4, miR-302d-3p, and autophagy-/PI3K-AKT pathway-related markers, were measured by qRT-PCR or/and western blot.Results: Our results showed that miR-302d-3p inhibited cell viability and promoted apoptosis of LPS-treated CHON-001 cells by targeting ITGB4. VPA treatment remarkably alleviated LPS-stimulated injury in CHON-001 cells. The inhibitory effect of VPA on LPS-stimulated damage in CHON-001 cells was weakened by miR-302d-3p overexpression, while it was intensified because of ITGB4 upregulation. Mechanistically, VPA treatment induced a significant decrease in the levels of p-PI3K and p-AKT in LPS-stimulated CHON-001 cells through regulating miR-302d-3p/ITGB4 axis.Conclusion: Overall, VPA treatment may ameliorate LPS-induced injury on chondrocytes via the regulation of miR-302d-3p/ITGB4 pair and the inactivation of the PI3K-AKT pathway.

2021 ◽  
Vol 26 (1) ◽  
Author(s):  
Guoying Zhang ◽  
Cheng Xue ◽  
Yiming Zeng

Abstract Background We have previously found that β-elemene could inhibit the viability of airway granulation fibroblasts and prevent airway hyperplastic stenosis. This study aimed to elucidate the underlying mechanism and protective efficacy of β-elemene in vitro and in vivo. Methods Microarray and bioinformatic analysis were used to identify altered pathways related to cell viability in a β-elemene-treated primary cell model and to construct a β-elemene-altered ceRNA network modulating the target pathway. Loss of function and gain of function approaches were performed to examine the role of the ceRNA axis in β-elemene's regulation of the target pathway and cell viability. Additionally, in a β-elemene-treated rabbit model of airway stenosis, endoscopic and histological examinations were used to evaluate its therapeutic efficacy and further verify its mechanism of action. Results The hyperactive ILK/Akt pathway and dysregulated LncRNA-MIR143HG, which acted as a miR-1275 ceRNA to modulate ILK expression, were suppressed in β-elemene-treated airway granulation fibroblasts; β-elemene suppressed the ILK/Akt pathway via the MIR143HG/miR-1275/ILK axis. Additionally, the cell cycle and apoptotic phenotypes of granulation fibroblasts were altered, consistent with ILK/Akt pathway activity. In vivo application of β-elemene attenuated airway granulation hyperplasia and alleviated scar stricture, and histological detections suggested that β-elemene's effects on the MIR143HG/miR-1275/ILK axis and ILK/Akt pathway were in line with in vitro findings. Conclusions MIR143HG and ILK may act as ceRNA to sponge miR-1275. The MIR143HG/miR-1275/ILK axis mediates β-elemene-induced cell cycle arrest and apoptosis of airway granulation fibroblasts by modulating the ILK/Akt pathway, thereby inhibiting airway granulation proliferation and ultimately alleviating airway stenosis.


Author(s):  
Xueying Tong ◽  
Jiajuan Chen ◽  
Wei Liu ◽  
Hui Liang ◽  
Hezhong Zhu

AbstractCardiovascular diseases rank the top cause of morbidity and mortality worldwide and are usually associated with blood reperfusion after myocardial ischemia/reperfusion injury (MIRI), which often causes severe pathological damages and cardiomyocyte apoptosis. LSINCT5 expression in the plasma of MI patients (n = 53), healthy controls (n = 42) and hypoxia-reoxygenation (HR)-treated cardiomyocyte AC16 cells was examined using qRT-PCR. The effects of LSINCT5 on cell viability and apoptosis were detected by MTT and flow cytometry, respectively. The expression of apoptosis-related proteins Bcl2, Bax and caspase 3 were tested by Western blot. The interaction between LSINCT5 and miR-222 was predicted by bioinformatic analysis. Moreover, changes in viability and apoptosis of AC16 cells co-transfected with siLSINCT5 and miR-222 inhibitor after HR treatment were examined. At last, the expression of proteins in PI3K/AKT pathway, namely PTEN, PI3K and AKT, was examined to analyze the possible pathway participating in LSINCT5-mediated MI/RI. Our study showed that LSINCT5 expression was upregulated in the plasma of MI patients and HR-treated AC16 cells. LSINCT5 overexpression significantly decreased cell viability and apoptosis. Luciferase reporter gene assay and RNA pulldown assay showed that LSINCT5 was a molecular sponge of miR-222. MiR-222 silencing in AC16 cells simulated the phenotypes of MIRI patients and HR-treated cells, indicating that LSINCT5 functions via miR-222 to regulate proliferation and apoptosis of HR-treated AC16 cells. We also showed that proteins of PI3K/AKT signaling pathway were affected in HR-treated AC16 cells, and LSINTC5 knockdown rescued these effects. LncRNA LSINCT5 was upregulated during MI pathogenesis, and LSINCT5 regulated MIRI possibly via a potential LSINCT5/miR-222 axis and PI3K/AKT signaling pathway. Our findings may provide novel evidence for MIRI prevention.


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 1128.1-1129
Author(s):  
A. Mavropoulos ◽  
S. Tsiogkas ◽  
D. Skyvalidas ◽  
C. Liaskos ◽  
A. Roussaki-Schulze ◽  
...  

Background:Delphinidin, a dietary anthocyanidin and powerful anti-oxidant from pigmented fruits and vegetables, has broad anti-inflammatory properties. In a human skin model of psoriasis, delphinidin reduced expression of proliferative and inflammatory markers (1).Objectives:The rationale of our study was to assess whether delphinidin can in vitro suppress IL-17 and IFN-γ production in peripheral blood mononuclear cell (PBMC) subsets from patients with psoriatic arthritis (PsA).Methods:PBMCs were obtained from 24 patients with PsA attending the outpatient clinic of the Department of Rheumatology/clinical Immunology at the University General Hospital of Larissa, Greece. 16 age- and sex-matched healthy volunteers were also included in the study. Delphinidin was supplemented at a concentration ranging from 1 to 50μg/ml, one hour prior to cell stimulation. Cell viability (Annexin V staining) and innate/adaptive lymphocyte subpopulations were assessed by flow cytometry with a panel of fluorochrome-conjugated antibodies against CD56, CD3, CD4 and CD8. Intracellular expression of IL-17 and IFN-γ was measured following PMA/ionomycin stimulation for 5 hours using standard cell permeabilization protocols and monoclonal antibodies against IL-17 and IFN-γResults:Delphinidin at concentration ≥10 μg/ml sharply diminished IL-17-production by CD4(+) T cells (Th17) and CD56(+)CD3(+) (NKT) cells from patients with psoriatic arthritis and normal controls (p≤0.05). IFN-γ producing T (CD4 and CD8) cells, as well as NK and NKT cells were also dose-dependently suppressed following delphinidin pre-incubation in both patients and healthy controls. Inhibition of IFN-γ(+) cells ranged from 27 to 69% and peaked at delphinidin concentration 20-50μg/ml. The inhibitory effect of delphinidin on IL-17 and IFN-γ producing lymphocytes was not due to compromised cell viability, as assessed by annexin V binding.Conclusion:Delphinidin exerts, in a dose-dependent manner, a profound in vitro inhibitory effect on T cell and NKT cell IL-17 and IFN-γ production in PsA, and therefore, it may be used as a dietary immunosuppressant, complementary to standard treatment.References:[1]Chamcheu JC Skin Pharmacol Physiol. 2015;28(4):177-88. doi: 10.1159/000368445Disclosure of Interests:ATHANASIOS MAVROPOULOS: None declared, Sotirios Tsiogkas: None declared, Dimitrios Skyvalidas: None declared, Christos Liaskos: None declared, Aggeliki Roussaki-Schulze Grant/research support from: Received a grant to support the educational and research activities of the department from Genesis Pharma (2018), Speakers bureau: Received honoraria from Genesis Pharma and Janssen(2017) and from Roche and Pharmaserve Lilly(2018), Efterpi Zafiriou Speakers bureau: Received honoraria from Genesis Pharma, Abbvie, Novartis, Roche, Jansses(2017) and Novartis, Abbvie(2018), Dimitrios Bogdanos: None declared, Lazaros Sakkas Grant/research support from: Received a grant to support the educational and research activities of the department from Bristol-Meyers Squib, Speakers bureau: Received honoraria from Actellion(2018), Janssen(2017), Novartis(2017), Sanofi-Aventis(2018), Abbvie(2017) and Roche(2017)


2009 ◽  
Vol 37 (5) ◽  
pp. 1080-1084 ◽  
Author(s):  
Charles H. Large ◽  
Elena Di Daniel ◽  
Xingbao Li ◽  
Mark S. George

One strategy to understand bipolar disorder is to study the mechanism of action of mood-stabilizing drugs, such as valproic acid and lithium. This approach has implicated a number of intracellular signalling elements, such as GSK3β (glycogen synthase kinase 3β), ERK (extracellular-signal-regulated kinase)/MAPK (mitogen-activated protein kinase) or protein kinase C. However, lamotrigine does not seem to modulate any of these targets, which is intriguing given that its profile in the clinic differs from that of valproic acid or lithium, with greater efficacy to prevent episodes of depression than mania. The primary target of lamotrigine is the voltage-gated sodium channel, but it is unclear why inhibition of these channels might confer antidepressant efficacy. In healthy volunteers, we found that lamotrigine had a facilitatory effect on the BOLD (blood-oxygen-level-dependent) response to TMS (transcranial magnetic stimulation) of the prefrontal cortex. This effect was in contrast with an inhibitory effect of lamotrigine when TMS was applied over the motor cortex. In a follow-up study, a similar prefrontal specific facilitatory effect was observed in a larger cohort of healthy subjects, whereas valproic acid inhibited motor and prefrontal cortical TMS-induced BOLD response. In vitro, we found that lamotrigine (3–10 μM) enhanced the power of gamma frequency network oscillations induced by kainic acid in the rat hippocampus, an effect that was not observed with valproic acid (100 μM). These data suggest that lamotrigine has a positive effect on corticolimbic network function that may differentiate it from other mood stabilizers. The results are also consistent with the notion of corticolimbic network dysfunction in bipolar disorder.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Shuang Wu ◽  
Tiantian Yang ◽  
Kai Cen ◽  
Yihuai Zou ◽  
Xiaowei Shi ◽  
...  

Context. About 15 million people worldwide suffer strokes each year and 5 million people are left with permanent disabilities which is due to the loss of local blood supply to the brain, resulting in a neurologic deficit. Panax notoginseng (Bruk.) F. H. Chen (Araliaceae) is a traditional Chinese herbal medicine widely used in the treatment of cardio-cerebrovascular diseases. Objective. This study investigated whether Panax notoginseng saponins (PNS) extracted from Panax notoginseng (Bruk.) F. H. Chen played a neuroprotective role by affecting the EGFR/PI3K/AKT pathway in oxygen-glucose deprived (OGD) SH-SY5Y cells. Materials and Methods. Different groups of OGD SH-SY5Y cells were treated with varying doses of PNS, PNS + AG1478 (a specific inhibitor of EGFR), or AG1478 for 16 hours. CCK8, Annexin V-FITC/PI apoptosis analysis, and LDH release analysis were used to determine cell viability, apoptosis rate, and amounts of LDH. Quantitative real-time PCR (q-RT-PCR) and western blotting were used to measure mRNA and proteins levels of p-EGFR/EGFR, p-PI3K/PI3K, and p-AKT/AKT in SH-SY5Y cells subjected to OGD. Results. PNS significantly enhanced cell viability, reduced apoptosis, and weakened cytotoxicity by inhibiting the release of LDH. The mRNA expression profiles of EGFR, PI3K, and AKT showed no difference between model and other groups. Additionally, ratios of p-EGFR, p-PI3K, and p-AKT to EGFR, PI3K, and AKT proteins expression, respectively, all increased significantly. Conclusions. These findings indicate that PNS enhanced neuroprotective effects by activating the EGFR/PI3K/AKT pathway and elevating phosphorylation levels in OGD SH-SY5Y cells.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2371-2371
Author(s):  
Medhat Shehata ◽  
Susanne Schnabl ◽  
Elena Ponath ◽  
Stefanie Tauber ◽  
Dita Demirtas ◽  
...  

Abstract Abstract 2371 Poster Board II-348 Chronic lymphocytic leukemia (CLL) is a clonal expansion of B cells which is characterized by a defect in apoptosis and is associated with the co-expression of CD19, CD5 and CD23. Lumiliximab is a monoclonal antibody against CD23 which has been shown to exert a promising therapeutic effect in CLL in vivo and to induce apoptosis in CD23+ lymphoma cells in vitro. The aim of this study was to investigate the direct effect of lumiliximab on cell viability and to explore its molecular mechanism of action in primary CLL cells. PBMC from twenty CLL patients were used in this study. Nine patients had previous therapy and 11 were untreated. Nine patients had unmutated and 11 had mutated IgVH genes. The mean percentage of CD19+/CD5+/CD23+ cells was 80% (range 53-98%). PBMC were exposed to various concentrations of lumiliximab (1-50 μg/mL) for various durations (1-15 days). The long term incubation with lumiliximab was performed in a microenvironment co-culture model using primary human stromal cells which prevent spontaneous apoptosis of CLL cells. Cell viability was assessed by flow cytometric analysis using annexin V/PI staining and by MTT assays. The results showed that single exposure to lumiliximab had a minimal effect on cell viability (< 1 fold increase in apoptosis rate compared to untreated cells and to the isotype control antibody). Cross-linking with goat anti-human IgG was more effective in inducing cell death. Interestingly, repeated exposure to lumiliximab without cross-linking had a significant pro-apoptotic effect selectively in the CD19+/CD5+ cells. Western blotting analysis demonstrated a significant biological response to the single and repeated exposure to lumiliximab in spite of the moderate pro-apoptotic effect. Lumiliximab induced a significant decrease in Bcl-2, Mcl-1 and Hsp70 protein expression. In addition, it resulted in a significant decrease in the phosphorylation of Akt1 at serine residue 473 and dephosphorylation (activation) of the tumor suppressor PTEN at serine residue 380 suggesting the involvement of the PI3-K/Akt/PTEN cascade in priming CLL cells to undergo apoptosis by lumiliximab. Pre-incubation of CLL cells with lumiliximab enhanced the pro-apoptotic effect of PI3-K inhibitor LY292004 and the CK2 inhibitor apigenin. Consistent with previous observations, pre-exposure of CLL cells to lumiliximab augmented the cytotoxic effect of Fludarabine. The in vitro response to lumiliximab did not appear to be influenced by IgVH mutation status, cytogenetics or by previous therapy. To gain further insight into the downstream targets of lumiliximab in CLL, microarray analysis and pathway exploration was performed. The data revealed that lumiliximab regulates several sets of genes which are involved in chemokine signaling, cytokine/cytokine receptor interaction, oxidative stress, PI3-K and integrin signaling, complement cascade and Toll-like receptor signaling. Single exposure to lumiliximab led to down-regulation of several genes including LY9, GPR183, RGS1, HSPA6, and INPP5F and up-regulation of FN1, FAIM3 and LOX. Repeated exposure to Lumiliximab led to a significant down-regulation of TXNIP, CTSB, SODS, IFI44, IRF7, TNFSF13B, MS4A7, CCL4, CCL7, CCL8, cathepsin B, MARKS, ADAMS and FCER1G and up-regulation of SPP1, C10orf10, ANGPTL6, RBBP4 and GSTA4. In conclusion, these data demonstrate that repeated exposure to Lumiliximab is effective in priming CLL cells to undergo apoptosis through inactivation of the PI3-K/Akt pathway and render the cells more sensitive to cytotoxic compounds. The data also provide further evidence of a promising therapeutic role for lumiliximab in CLL and a rationale for lumiliximab-based drug combinations to improve treatment of this incurable disease. Disclosures: Shehata: Biogen Idec: Research Funding. Hughes:Biogen Idec: Employment. Maclaren:Biogen Idec: Employment. Jaeger:Biogen Idec: Research Funding.


2016 ◽  
Vol 38 (5) ◽  
pp. 1939-1951 ◽  
Author(s):  
Lei Li ◽  
Lian-Mei Zhao ◽  
Su-li Dai ◽  
Wen-Xuan Cui ◽  
Hui-Lai Lv ◽  
...  

Background/Aims: Periplocin is extracted from the traditional herbal medicine cortex periplocae, which has been reported to suppress the growth of cancer cells. However, little is known about its effect on gastric cancer cells. Methods: Gastric cancer cells were treated with periplocin, and cell viability was assessed using MTS assay. Flow cytometry and TUNEL staining were performed to evaluate apoptosis, and protein expression was examined by western blotting. Microarray analysis was used to screen for changes in related genes. Results: We found that periplocin had an inhibitory effect on gastric cancer cell viability in a dose-dependent manner. Periplocin inhibited cell viability via the ERK1/2-EGR1 pathway to induce apoptosis. Periplocin also inhibited the growth of tumor xenografts and induced apoptosis in vivo. Conclusion: Our results show that periplocin inhibits the proliferation of gastric cancer cells and induces apoptosis in vitro and in vivo, indicating its potential to be used as an antitumor drug.


2020 ◽  
Vol 19 (2) ◽  
pp. 259-264
Author(s):  
Nong Lin ◽  
Qiaolu Yang ◽  
Tong Xu ◽  
Lianguo Shi

Purpose: To evaluate the in vitro and in vivo effects of the combination therapy of histone deacetylases (HDAsC) inhibitor, chidamide, and bromodomain-containing proteins (BETs) inhibitor, PFI-1, on triplenegative breast cancer (TNBC). Methods: Four distinct breast cancer cell lines and one TNBC mouse model were treated with vehicle, chidamide, PFI-1 alone, or chidamide and PFI-1. The inhibitory effect of chidamide or PFI-1 on HDACs and BETs was assessed by HDAC enzyme inhibition and AlphaScreen assays. Cell viability was determined by MTT assay while protein expression of p-STAT3 was evaluated by western blotting and immunohistochemistry (IHC) staining assay. Results: Chidamide exerted inhibitory effect on HDACs while PFI-1 inhibited BET proteins. The threedimensional model demonstrated the interactions between chidamide and HDAC2, and between PFI-1 and BRD4. Chidamide or PFI-1 exerted inhibitory effects on breast cancer cell proliferation in vitro. However, the combination of PFI-1 and chidamide significantly inhibit MDA-MB-231 cell viability, and decrease the expression of p-STAT3, when compared to that treated with chidamide or PFI-1 alone. Moreover, the combined inhibitory effect of PFI-1 and chidamide on tumor growth was also found in the in vivo mice experiments. Conclusion: The combination of chidamide and PFI-1 is a potential is a potential therapeutic strategy for the management of TNBC. Keywords: Triple-negative breast cancer, Histone deacetylases, Bromodomain


2019 ◽  
Vol 10 (1) ◽  
pp. 40-48 ◽  
Author(s):  
Murat Alkurt ◽  
Zeynep Yesil Duymus ◽  
Tugay Sisci

Aims and objectives: The aim of this in vitro study was to investigate the antibacterial and cytotoxic effect of cements: zinc polycarboxylate, glass ionomer, self-adhesive resin cement, eugenol-containing and eugenol-free temporary cements. Materials and methods: The agar-diffusion test was carried out on 4 types of bacteria: Streptococcus mutans ( S. mutans; ATCC 35668), Streptococcus salivarius ( S. salivarius; ATCC 13419), Streptococcus sangius ( S. sangius; ATCC 10556), and Lactobacillus casei ( L. casei; ATCC 27139). Freshly prepared cement samples were placed on a brain heart infusion medium and left at 37°C for 24 hours in a CO2 incubator. Ampicillin disks of 10 mg were used as positive controls. Antimicrobial effects were determined using the zone of inhibition measurement in millimeters at 24 and 48 hours. Cytotoxicity was assessed through a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay (SERVA Electrophoresis GmbH, Heidelberg, Germany). To evaluate cell viability, an optical density microplate reader (Tecan™ Sunrise, Männedorf, Switzerland) was used at 24 and 48 hours at 570 and 630 nm, respectively. Results: Except the positive control group, the Adhesor luting cement showed a higher inhibitory effect on S. sangius and L. casei. RelyX Temp E temporary cement showed an inhibitory effect on S. sangius and L. casei, whereas the Cavex temporary cement showed an inhibitory effect on only S. sangius at 24 and 48 hours. At 100% concentration, Cavex temporary cement showed the least toxicity (23.6% pulp cell and 9.9% gingival cell) and highest cell viability (76.4% pulp cell and 90.1% gingival cell) at 24 hours. However, Meron, Adhesor, Panavia SA luting, and RelyX Temp E temporary cements showed the highest toxicity (above 94% gingival cell and 95% pulp cell) at 100% concentration. Conclusions: Meron, Adhesor, Panavia SA luting, and RelyX Temp E temporary cements may have a cytotoxic potential. None of the cements showed an inhibitory effect on S. mutan and S. salivarius, whereas Adhesor luting cement has a higher inhibitory effect than that of S. sangius and L. casei.


2006 ◽  
Vol 24 (18_suppl) ◽  
pp. 10026-10026
Author(s):  
T. Fujita ◽  
K. Kawasaki ◽  
D. Takabatake ◽  
H. Takahashi ◽  
Y. Ogasawara ◽  
...  

10026 Background: Trastuzumab is the only HER2/neu-directed therapy for the treatment of patients with metastatic breast cancer. The efficacy of trastuzumab depends on the HER2/neu status of the tumor and the patient’s prior treatment, but even when patients are selected on the basis of HER2/neu gene amplification, the single-agent response rate ranges from 12 to 30% and few patients respond to trastuzumab monotherapy. Here we propose PTEN as a predictive biomarker for trastuzumab efficacy. Methods: Human breast cancer SKBR3 and drug-resistant SKBR3/R cells were analyzed, in vitro. Also we examined, retrospectively, clinical samples from patients who had been treated with trastuzumab for the metastatic disease and analyzed the relationship between trastuzumab efficacy and PTEN expression profile with immunihistochemistry. The PTEN expression level was scored semiquantitatively based on staining intensity and distribution using the immunoreactive score. Statistical analysis was performed using the two-tailed student’s t test, Fisher’s test and ANOVA. Results: The PI3K/Akt signaling pathway was observed to be highly active in the drug-resistant cells, and their level of PTEN was significanctly low compared with parental SKBR3 cells. Delivery of antisense PTEN duplex siRNA significantly decreased the trastuzumab chemosensitivity of parental SKBR3 cells, and marked activation of Akt signaling pathway was also recognized in oligonucleotid delivered parental cells. Moreover, in clinical analysis, immunohistochemical investigation revealed that trastuzumab treatment was remarkably successful in patients with elevated PTEN expression and statistically significant (p<0.05). Conclusions: PTEN activity might play an important and major role in its HER2/PI3K/Akt-mediated anti-tumor effect, and could be a useful biomarker for predicting the efficacy of trastuzumab in the treatment of breast cancer. No significant financial relationships to disclose.


Sign in / Sign up

Export Citation Format

Share Document