scholarly journals The Role of Tumour Metabolism in Cisplatin Resistance

2021 ◽  
Vol 8 ◽  
Author(s):  
Lude Wang ◽  
Xiaoya Zhao ◽  
Jianfei Fu ◽  
Wenxia Xu ◽  
Jianlie Yuan

Cisplatin is a chemotherapy drug commonly used in cancer treatment. Tumour cells are more sensitive to cisplatin than normal cells. Cisplatin exerts an antitumour effect by interfering with DNA replication and transcription processes. However, the drug-resistance properties of tumour cells often cause loss of cisplatin efficacy and failure of chemotherapy, leading to tumour progression. Owing to the large amounts of energy and compounds required by tumour cells, metabolic reprogramming plays an important part in the occurrence and development of tumours. The interplay between DNA damage repair and metabolism also has an effect on cisplatin resistance; the molecular changes to glucose metabolism, amino acid metabolism, lipid metabolism, and other metabolic pathways affect the cisplatin resistance of tumour cells. Here, we review the mechanism of action of cisplatin, the mechanism of resistance to cisplatin, the role of metabolic remodelling in tumorigenesis and development, and the effects of common metabolic pathways on cisplatin resistance.

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Haitao Lu ◽  
Yumei Que ◽  
Xia Wu ◽  
Tianbing Guan ◽  
Hao Guo

Abstract Biofilm formation plays a key role in many bacteria causing infections, which mostly accounts for high-frequency infectious recurrence and antibiotics resistance. In this study, we sought to compare modified metabolism of biofilm and planktonic populations with UTI89, a predominant agent of urinary tract infection, by combining mass spectrometry based untargeted and targeted metabolomics methods, as well as cytological visualization, which enable us to identify the driven metabolites and associated metabolic pathways underlying biofilm formation. Surprisingly, our finding revealed distinct differences in both phenotypic morphology and metabolism between two patterns. Furthermore, we identified and characterized 38 differential metabolites and associated three metabolic pathways involving glycerolipid metabolism, amino acid metabolism and carbohydrate metabolism that were altered mostly during biofilm formation. This discovery in metabolic phenotyping permitted biofilm formation shall provide us a novel insight into the dissociation of biofilm, which enable to develop novel biofilm based treatments against pathogen causing infections, with lower antibiotic resistance.


2019 ◽  
Vol 65 (9) ◽  
pp. 1090-1101 ◽  
Author(s):  
Sugarniya Subramaniam ◽  
Varinder Jeet ◽  
Judith A Clements ◽  
Jennifer H Gunter ◽  
Jyotsna Batra

AbstractBACKGROUNDMetabolic reprogramming is a hallmark of cancer. MicroRNAs (miRNAs) have been found to regulate cancer metabolism by regulating genes involved in metabolic pathways. Understanding this layer of complexity could lead to the development of novel therapeutic approaches.CONTENTmiRNAs are noncoding RNAs that have been implicated as master regulators of gene expression. Studies have revealed the role of miRNAs in the metabolic reprogramming of tumor cells, with several miRNAs both positively and negatively regulating multiple metabolic genes. The tricarboxylic acid (TCA) cycle, aerobic glycolysis, de novo fatty acid synthesis, and altered autophagy allow tumor cells to survive under adverse conditions. In addition, major signaling molecules, hypoxia-inducible factor, phosphatidylinositol-3 kinase/protein kinase B/mammalian target of rapamycin/phosphatase and tensin homolog, and insulin signaling pathways facilitate metabolic adaptation in tumor cells and are all regulated by miRNAs. Accumulating evidence suggests that miRNA mimics or inhibitors could be used to modulate the activity of miRNAs that drive tumor progression via altering their metabolism. Currently, several clinical trials investigating the role of miRNA-based therapy for cancer have been launched that may lead to novel therapeutic interventions in the future.SUMMARYIn this review, we summarize cancer-related metabolic pathways, including glycolysis, TCA cycle, pentose phosphate pathway, fatty acid metabolism, amino acid metabolism, and other metabolism-related oncogenic signaling pathways, and their regulation by miRNAs that are known to lead to tumorigenesis. Further, we discuss the current state of miRNA therapeutics in the clinic and their future potential.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Huanyong Li ◽  
Xiaoqian Tang ◽  
Xiuyan Yang ◽  
Huaxin Zhang

AbstractNitraria sibirica Pall., a typical halophyte that can survive under extreme drought conditions and in saline-alkali environments, exhibits strong salt tolerance and environmental adaptability. Understanding the mechanism of molecular and physiological metabolic response to salt stress of plant will better promote the cultivation and use of halophytes. To explore the mechanism of molecular and physiological metabolic of N. sibirica response to salt stress, two-month-old seedlings were treated with 0, 100, and 400 mM NaCl. The results showed that the differentially expressed genes between 100 and 400 mmol L−1 NaCl and unsalted treatment showed significant enrichment in GO terms such as binding, cell wall, extemal encapsulating structure, extracellular region and nucleotide binding. KEGG enrichment analysis found that NaCl treatment had a significant effect on the metabolic pathways in N. sibirica leaves, which mainly including plant-pathogen interaction, amino acid metabolism of the beta alanine, arginine, proline and glycine metabolism, carbon metabolism of glycolysis, gluconeogenesis, galactose, starch and sucrose metabolism, plant hormone signal transduction and spliceosome. Metabolomics analysis found that the differential metabolites between the unsalted treatment and the NaCl treatment are mainly amino acids (proline, aspartic acid, methionine, etc.), organic acids (oxaloacetic acid, fumaric acid, nicotinic acid, etc.) and polyhydric alcohols (inositol, ribitol, etc.), etc. KEGG annotation and enrichment analysis showed that 100 mmol L−1 NaCl treatment had a greater effect on the sulfur metabolism, cysteine and methionine metabolism in N. sibirica leaves, while various amino acid metabolism, TCA cycle, photosynthetic carbon fixation and sulfur metabolism and other metabolic pathways have been significantly affected by 400 mmol L−1 NaCl treatment. Correlation analysis of differential genes in transcriptome and differential metabolites in metabolome have found that the genes of AMY2, BAM1, GPAT3, ASP1, CML38 and RPL4 and the metabolites of L-cysteine, proline, 4-aminobutyric acid and oxaloacetate played an important role in N. sibirica salt tolerance control. This is a further improvement of the salt tolerance mechanism of N. sibirica, and it will provide a theoretical basis and technical support for treatment of saline-alkali soil and the cultivation of halophytes.


GeroScience ◽  
2021 ◽  
Author(s):  
Haihui Zhuang ◽  
Sira Karvinen ◽  
Timo Törmäkangas ◽  
Xiaobo Zhang ◽  
Xiaowei Ojanen ◽  
...  

AbstractAerobic capacity is a strong predictor of longevity. With aging, aerobic capacity decreases concomitantly with changes in whole body metabolism leading to increased disease risk. To address the role of aerobic capacity, aging, and their interaction on metabolism, we utilized rat models selectively bred for low and high intrinsic aerobic capacity (LCRs/HCRs) and compared the metabolomics of serum, muscle, and white adipose tissue (WAT) at two time points: Young rats were sacrificed at 9 months of age, and old rats were sacrificed at 21 months of age. Targeted and semi-quantitative metabolomics analysis was performed on the ultra-pressure liquid chromatography tandem mass spectrometry (UPLC-MS) platform. The effects of aerobic capacity, aging, and their interaction were studied via regression analysis. Our results showed that high aerobic capacity is associated with an accumulation of isovalerylcarnitine in muscle and serum at rest, which is likely due to more efficient leucine catabolism in muscle. With aging, several amino acids were downregulated in muscle, indicating more efficient amino acid metabolism, whereas in WAT less efficient amino acid metabolism and decreased mitochondrial β-oxidation were observed. Our results further revealed that high aerobic capacity and aging interactively affect lipid metabolism in muscle and WAT, possibly combating unfavorable aging-related changes in whole body metabolism. Our results highlight the significant role of WAT metabolism for healthy aging.


2020 ◽  
Vol 32 (7) ◽  
pp. 485-491 ◽  
Author(s):  
Michael P Plebanek ◽  
Michael Sturdivant ◽  
Nicholas C DeVito ◽  
Brent A Hanks

Abstract The dendritic cell (DC) is recognized as a vital mediator of anti-tumor immunity. More recent studies have also demonstrated the important role of DCs in the generation of effective responses to checkpoint inhibitor immunotherapy. Metabolic programming of DCs dictates their functionality and can determine which DCs become immunostimulatory versus those that develop a tolerized phenotype capable of actively suppressing effector T-cell responses to cancers. As a result, there is great interest in understanding what mechanisms have evolved in cancers to alter these metabolic pathways, thereby allowing for their continued progression and metastasis. The therapeutic strategies developed to reverse these processes of DC tolerization in the tumor microenvironment represent promising candidates for future testing in combination immunotherapy clinical trials.


Cancers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 675 ◽  
Author(s):  
Bo-Hyun Choi ◽  
Jonathan L. Coloff

Far beyond simply being 11 of the 20 amino acids needed for protein synthesis, non-essential amino acids play numerous important roles in tumor metabolism. These diverse functions include providing precursors for the biosynthesis of macromolecules, controlling redox status and antioxidant systems, and serving as substrates for post-translational and epigenetic modifications. This functional diversity has sparked great interest in targeting non-essential amino acid metabolism for cancer therapy and has motivated the development of several therapies that are either already used in the clinic or are currently in clinical trials. In this review, we will discuss the important roles that each of the 11 non-essential amino acids play in cancer, how their metabolic pathways are linked, and how researchers are working to overcome the unique challenges of targeting non-essential amino acid metabolism for cancer therapy.


2004 ◽  
Vol 55 (9) ◽  
pp. 991
Author(s):  
Md. Ruhul Amin ◽  
Ryoji Onodera ◽  
R. Islam Khan ◽  
R. John Wallace ◽  
C. Jamie Newbold

Entodinium species are important in catabolic protein metabolism by the mixed ruminal microbial population. This study was conducted to purify, and investigate properties of one of the enzymes involved in amino acid metabolism by Entodinium caudatum, glutamate-phenylpyruvate aminotransferase (GPA; EC 2.6.1.64). GPA was purified 74-fold from a cell-free extract by ammonium sulfate precipitation and column chromatography with phenyl-superose, DEAE-Toyopearl 650M, Sephacryl S-100 HR, and Sephadex G-100. The molecular mass of GPA was estimated by SDS–PAGE to be 65.0 kDa. The optimum pH was 6.0 and it was found to be reactive over a wide range of pH from 5.0 to 10.5. Maximum activity of GPA occurred at 45°C and the activity declined at temperatures over 55°C. GPA was stable below 60°C. Aminooxyacetate and phenylhydrazine were highly inhibitory, and SDS, EDTA, and some heavy metal ions also inhibited activity. The purification and characterisation of the enzyme will help to isolate the gene and ultimately to understand the role of GPA in both anabolic and catabolic amino acid metabolism by Entodinium caudatum.


2021 ◽  
Author(s):  
Yanjuan Liu ◽  
Qi Zeng ◽  
Wen Xiao ◽  
Fang Chen ◽  
Lianhong Zou ◽  
...  

Abstract Xuebijing injection has been widely applied to treat sepsis. However, its roles in the dynamic change of metabolism in sepsis are still unknown. In our study, Gas chromatography-mass spectrometer (GC-MS) combined with multivariate statistical techniques was used to detect the metabolic change in septic rats with or without XBJ injection treatment. The KEGG pathway analysis was used to further analyze the related metabolic pathways in which the identified metabolites were involved. Based on the fold change, variable important in projection, and P value, we found 11, 33 and 26 differential metabolites in the sepsis group at 2, 6 and 12 hours post CLP, compared with the control group. Besides, we also found 32, 23 and 28 differential metabolites in the XBJ group at 2, 6 and 12 hours post CLP. The related pathways of differential metabolites were glycometabolism at 2h, glycometabolism and amino acid metabolism at 6h and amino acid metabolism at 12h post CLP in the sepsis group compared with the control group. Besides, glycometabolism, amino acid metabolism and lipid metabolism changed markedly after XBJ injection for 2 hours; while only amino acid metabolism changed significantly with the treatment of XBJ injection for 6 and 12 hours, compared with the sepsis group. Further analysis showed 3, 6 and 6 differential metabolites were overlapped in the sepsis group and XBJ group at 2, 6 and 12 hours post CLP. These identified differential metabolites were majorly involved in arginine and proline metabolism, suggesting that XBJ injection is capable of improving metabolic disorders in CLP-induced septic rat to a certain extent.


2019 ◽  
Vol 42 (5) ◽  
pp. 1630-1644 ◽  
Author(s):  
Willian Batista‐Silva ◽  
Björn Heinemann ◽  
Nils Rugen ◽  
Adriano Nunes‐Nesi ◽  
Wagner L. Araújo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document