scholarly journals Sensory Attenuation in the Auditory Modality as a Window Into Predictive Processing

2021 ◽  
Vol 15 ◽  
Author(s):  
Fabian Kiepe ◽  
Nils Kraus ◽  
Guido Hesselmann

Self-generated auditory input is perceived less loudly than the same sounds generated externally. The existence of this phenomenon, called Sensory Attenuation (SA), has been studied for decades and is often explained by motor-based forward models. Recent developments in the research of SA, however, challenge these models. We review the current state of knowledge regarding theoretical implications about the significance of Sensory Attenuation and its role in human behavior and functioning. Focusing on behavioral and electrophysiological results in the auditory domain, we provide an overview of the characteristics and limitations of existing SA paradigms and highlight the problem of isolating SA from other predictive mechanisms. Finally, we explore different hypotheses attempting to explain heterogeneous empirical findings, and the impact of the Predictive Coding Framework in this research area.

Author(s):  
Sergey V. Dorozhkin

There has been much recent activity in the research area of nanoparticles and nanocrystalline materials, in many fields of science and technology. This is due to their outstanding and unique physical, mechanical, chemical and biological characteristics. Recent developments in biomineralization have demonstrated that nano-sized particles play an important role in the formation of the hard tissues of animals. It is well established that the basic inorganic building blocks of bones and teeth of mammals are nano-sized and nanocrystalline calcium orthophosphates (in the form of apatites) of a biological origin. In mammals, tens to hundreds of nanocrystals of biological apatite are found to combine into self-assembled structures under the control of bio-organic matrixes. It was also confirmed experimentally that the structure of both dental enamel and bones could be mimicked by an oriented aggregation of nano-sized calcium orthophosphates, determined by the biomolecules. The application and prospective use of nano-sized and nanocrystalline calcium orthophosphates for clinical repair of damaged bones and teeth are also known. For example, a greater viability and a better proliferation of various cells were detected on smaller crystals of calcium orthophosphates. Furthermore, studies revealed that the differentiation of various cells was promoted by nano-sized calcium orthophosphates. Thus, the nano-sized and nanocrystalline forms of calcium orthophosphates have the potential to revolutionize the field of hard tissue engineering, in areas ranging from bone repair and augmentation to controlled drug delivery devices. This paper reviews the current state of knowledge and recent developments of various nano-sized and nanocrystalline calcium orthophosphates, covering topics from the synthesis and characterization to biomedical and clinical applications. This review also provides possible directions of future research and development.


2020 ◽  
Vol 12 (23) ◽  
pp. 9977
Author(s):  
Babajide Abubakr Muritala ◽  
Maria-Victoria Sánchez-Rebull ◽  
Ana-Beatriz Hernández-Lara

This paper reviews the literature on online reviews in tourism and hospitality, and presents the current state of research in the area. A bibliometric approach was used to analyze 632 journal articles on online reviews in tourism and hospitality from 2005 to 2019 from the Scopus Database. This study identifies the most prolific journals, foundational works, and major research themes in the research area. In addition, we analyzed some dimensions of their network structure and the thematic evolution of the research area. The bibliometric method is quantitative and objective, and we carry out an analysis of the area based on citations and keywords. Researchers and business managers can gain useful insights on the current state of the art in this area. There have been only a few literature reviews tracking the growth in this research area, and even fewer using bibliometric methods or science maps. Therefore, this work provides an updated review of this fast-growing area with a bibliometric approach to highlight the recent developments with the aid of science maps, and shows the thematic network structure and evolution with an innovative visualization.


2021 ◽  
Vol 15 ◽  
Author(s):  
Ruxandra I. Tivadar ◽  
Robert T. Knight ◽  
Athina Tzovara

The human brain has the astonishing capacity of integrating streams of sensory information from the environment and forming predictions about future events in an automatic way. Despite being initially developed for visual processing, the bulk of predictive coding research has subsequently focused on auditory processing, with the famous mismatch negativity signal as possibly the most studied signature of a surprise or prediction error (PE) signal. Auditory PEs are present during various consciousness states. Intriguingly, their presence and characteristics have been linked with residual levels of consciousness and return of awareness. In this review we first give an overview of the neural substrates of predictive processes in the auditory modality and their relation to consciousness. Then, we focus on different states of consciousness - wakefulness, sleep, anesthesia, coma, meditation, and hypnosis - and on what mysteries predictive processing has been able to disclose about brain functioning in such states. We review studies investigating how the neural signatures of auditory predictions are modulated by states of reduced or lacking consciousness. As a future outlook, we propose the combination of electrophysiological and computational techniques that will allow investigation of which facets of sensory predictive processes are maintained when consciousness fades away.


2007 ◽  
Vol 21 (03n04) ◽  
pp. 590-599 ◽  
Author(s):  
M. BORGHESI ◽  
C. A. CECCHETTI ◽  
L. ROMAGNANI ◽  
P. ANTICI ◽  
P. AUDEBERT ◽  
...  

The acceleration of high-energy ion beams (up to several tens of MeV per nucleon) following the interaction of short ( t < 1ps ) and intense (Iλ2 > 1018W cm-2μm2) laser pulses with solid targets has been one of the most active areas of research in the last few years. The exceptional properties of these beams (high brightness and high spectral cutoff, high directionality and laminarity, short burst duration) distinguish them from those of the lower energy ions accelerated in earlier experiments at moderate laser intensities. In view of these properties, laser-driven ion beams can be employed in a number of groundbreaking applications in the scientific, technological and medical areas. This paper reviews the current state-of-the-art, highlights recent developments and indicate future directions of this research area.


2020 ◽  
Vol 16 ◽  
pp. 248-280 ◽  
Author(s):  
Rafia Siddiqui ◽  
Rashid Ali

In recent years, the research area of direct C–H bond functionalizations was growing exponentially not only due to the ubiquity of inert C–H bonds in diverse organic compounds, including bioactive natural and nonnatural products, but also due to its impact on the discovery of pharmaceutical candidates and the total synthesis of intricate natural products. On the other hand, more recently, the field of photoredox catalysis has become an indispensable and unparalleled research topic in modern synthetic organic chemistry for the constructions of challenging bonds, having the foremost scope in academia, pharmacy, and industry. Therefore, the development of green, simpler, and effective methodologies to accomplish direct C–H bond functionalization is well overdue and highly desirable to the scientific community. In this review, we mainly highlight the impact on, and the utility of, photoredox catalysts in inert ortho and para C–H bond functionalizations. Although a surge of research papers, including reviews, demonstrating C–H functionalizations have been published in this vital area of research, to our best knowledge, this is the first review that focuses on ortho and para C–H functionalizations by photoredox catalysis to provide atom- and step-economic organic transformations. We are certain that this review will act as a promoter to highlight the application of photoredox catalysts for the functionalization of inert bonds in the domain of synthetic organic chemistry.


2020 ◽  
Vol 43 ◽  
Author(s):  
Martina G. Vilas ◽  
Lucia Melloni

Abstract To become a unifying theory of brain function, predictive processing (PP) must accommodate its rich representational diversity. Gilead et al. claim such diversity requires a multi-process theory, and thus is out of reach for PP, which postulates a universal canonical computation. We contend this argument and instead propose that PP fails to account for the experiential level of representations.


2020 ◽  
Vol 91 (3) ◽  
pp. 31301
Author(s):  
Nabil Chakhchaoui ◽  
Rida Farhan ◽  
Meriem Boutaldat ◽  
Marwane Rouway ◽  
Adil Eddiai ◽  
...  

Novel textiles have received a lot of attention from researchers in the last decade due to some of their unique features. The introduction of intelligent materials into textile structures offers an opportunity to develop multifunctional textiles, such as sensing, reacting, conducting electricity and performing energy conversion operations. In this research work nanocomposite-based highly piezoelectric and electroactive β-phase new textile has been developed using the pad-dry-cure method. The deposition of poly (vinylidene fluoride) (PVDF) − carbon nanofillers (CNF) − tetraethyl orthosilicate (TEOS), Si(OCH2CH3)4 was acquired on a treated textile substrate using coating technique followed by evaporation to transform the passive (non-functional) textile into a dynamic textile with an enhanced piezoelectric β-phase. The aim of the study is the investigation of the impact the coating of textile via piezoelectric nanocomposites based PVDF-CNF (by optimizing piezoelectric crystalline phase). The chemical composition of CT/PVDF-CNC-TEOS textile was detected by qualitative elemental analysis (SEM/EDX). The added of 0.5% of CNF during the process provides material textiles with a piezoelectric β-phase of up to 50% has been measured by FTIR experiments. These results indicated that CNF has high efficiency in transforming the phase α introduced in the unloaded PVDF, to the β-phase in the case of nanocomposites. Consequently, this fabricated new textile exhibits glorious piezoelectric β-phase even with relatively low coating content of PVDF-CNF-TEOS. The study demonstrates that the pad-dry-cure method can potentially be used for the development of piezoelectric nanocomposite-coated wearable new textiles for sensors and energy harvesting applications. We believe that our study may inspire the research area for future advanced applications.


2017 ◽  
Vol 13 ◽  
pp. 244-261
Author(s):  
Mariola Tracz ◽  
Małgorzata Bajgier-Kowalska ◽  
Radosław Uliszak

Podkarpackie Voivodeship is one of the regions of Poland in which the number of agritourism entities is very high. Therefore tourism plays a significant role in its development strategy. The aim of the paper is to identify the current state of agritourism and the changes that have occurred in the region in the years 2000–2016. Specific objectives are to determine the distribution of agritourism farms and their offer, together with a comprehensive analysis of the environmental and socio-economic factors, as well as the impact of the Slovak-Ukrainian border. The report was developed on the statistical materials from the Polish Central Statistical Office, Podkarpackie Agricultural Advisory Centre in Boguchwała and data collected from municipalities and district offices that is published on their websites, as well as through interviews with 100 owners of agritourism farms in the Podkarpackie Voivodeship. The research has shown, on the one hand, the decline in the number of farms in the region and, on the other hand, the increase in the diversity of the tourist offer of these entities. Distribution of agritourism farms is closely linked to the attractiveness of natural environment and quality of secondary tourism resources. Traditional agritourism has not yet fully used its countryside, as well as cross-border advantages of its location.


2016 ◽  
Vol 1 (90) ◽  
pp. 92-97
Author(s):  
I.T. Slusar ◽  
V.A. Serbenyuk ◽  
A.N. Gera ◽  
A.P. Solyanik ◽  
A.A. Tarasenko

Research on the impact of the introduction of micro fertilizers and growth promoters on a background of mineral fertilizer and without N90R45К120 spent on old peat in shallow carbonate floodplain r.Supiy, Yahotyn Kyiv region. Power peat horizon about 60-70 cm, 7,4-7,6 pH of the aqueous extract, stupas schedule 56-60%, density 0,49-0,52 assembly soil, total nitrogen content (%) - 1.9; gross forms of phosphorus - 0,4, potassium 0.2, 20% lime. In experiments studying biological rehoplant, radustym, Biolan, emistim, Jets, humisol, plantafol, radyfarm and micronutrients: copper, boric acid, manganese sulphate, zinc sulphate, potassium humates. Treatment drugs conducted in the spring by spraying mixtures. Space research area of 60 m2, three-time repetition. It is established that the use of growth stimulants and micronutrients in the background N90R45К120 provided the highest yield mixtures of years, against making BIOLan - 9.9 t / ha Radyfarmu - 9.6 t / ha Radostymu 9.3 t / ha dry weight. In areas for making other preparations were intermediate yield growth rates - 0.5 - 2.0 t / ha dry weight. Also good gains herbage yields obtained by making all kinds of micronutrients and growth stimulants in the background without making makrodobryv which was within 5.3 - 6.9 t / ha to control without fertilization - 4.5 t / ha dry weight. In deep peat copper fertilizer (25 kg / ha of copper sulphate or 5 kg / ha pirytnoho cinders) in all zones should be making every 3-4 years, and zinc, cobalt and molybdenum advisable to make time for the growing season, spring, by foliar application in such numbers: ammonium molibdenovokyslyy - 0.3 kg / ha; cobalt sulfate - 3 kg / ha zinc sulphate 0.5 kg / ha or placers these salts should be mixed with major fertilizer.


2020 ◽  
Author(s):  
Ruben Laukkonen ◽  
Heleen A Slagter

How profoundly can humans change their own minds? In this paper we offer a unifying account of meditation under the predictive processing view of living organisms. We start from relatively simple axioms. First, the brain is an organ that serves to predict based on past experience, both phylogenetic and ontogenetic. Second, meditation serves to bring one closer to the here and now by disengaging from anticipatory processes. We propose that practicing meditation therefore gradually reduces predictive processing, in particular counterfactual cognition—the tendency to construct abstract and temporally deep representations—until all conceptual processing falls away. Our Many- to-One account also places three main styles of meditation (focused attention, open monitoring, and non-dual meditation) on a single continuum, where each technique progressively relinquishes increasingly engrained habits of prediction, including the self. This deconstruction can also make the above processes available to introspection, permitting certain insights into one’s mind. Our review suggests that our framework is consistent with the current state of empirical and (neuro)phenomenological evidence in contemplative science, and is ultimately illuminating about the plasticity of the predictive mind. It also serves to highlight that contemplative science can fruitfully go beyond cognitive enhancement, attention, and emotion regulation, to its more traditional goal of removing past conditioning and creating conditions for potentially profound insights. Experimental rigor, neurophenomenology, and no-report paradigms combined with neuroimaging are needed to further our understanding of how different styles of meditation affect predictive processing and the self, and the plasticity of the predictive mind more generally.


Sign in / Sign up

Export Citation Format

Share Document