scholarly journals Effect of Walking Adaptability on an Uneven Surface by a Stepping Pattern on Walking Activity After Stroke

2022 ◽  
Vol 15 ◽  
Author(s):  
Yusuke Sekiguchi ◽  
Keita Honda ◽  
Shin-Ichi Izumi

Real-world walking activity is important for poststroke patients because it leads to their participation in the community and physical activity. Walking activity may be related to adaptability to different surface conditions of the ground. The purpose of this study was to clarify whether walking adaptability on an uneven surface by step is related to daily walking activity in patients after stroke. We involved 14 patients who had hemiparesis after stroke (age: 59.4 ± 8.9 years; post-onset duration: 70.7 ± 53.5 months) and 12 healthy controls (age: 59.5 ± 14.2 years). The poststroke patients were categorized as least limited community ambulators or unlimited ambulators. For the uneven surface, the study used an artificial grass surface (7 m long, 2-cm leaf length). The subjects repeated even surface walking and the uneven surface walking trials at least two times at a comfortable speed. We collected spatiotemporal and kinematic gait parameters on both the even and uneven surfaces using a three-dimensional motion analysis system. After we measured gait, the subjects wore an accelerometer around the waist for at least 4 days. We measured the number of steps per day using the accelerometer to evaluate walking activity. Differences in gait parameters between the even and uneven surfaces were calculated to determine how the subjects adapted to an uneven surface while walking. We examined the association between the difference in parameter measurements between the two surface properties and walking activity (number of steps per day). Walking activity significantly and positively correlated with the difference in paretic step length under the conditions of different surface properties in the poststroke patients (r = 0.65, p = 0.012) and step width in the healthy controls (r = 0.68, p = 0.015). The strategy of increasing the paretic step length, but not step width, on an uneven surface may lead to a larger base of support, which maintains stability during gait on an uneven surface in poststroke patients, resulting in an increased walking activity. Therefore, in poststroke patients, an increase in paretic step length during gait on an uneven surface might be more essential for improving walking activity.

2016 ◽  
Vol 5 (2) ◽  
pp. 49-56
Author(s):  
Nabeel Baig ◽  
Sundus Masood ◽  
Shazia Qudrat ◽  
Asif Ashiq Ali

OBJECTIVE To study the effects of BMI on temporal-spatial gait parameters in young adults TARGET POPULATION AND SAMPLE SIZE Target population in this study is students. Total 40 students participated in this study. Participants were drawn from College of Physical Therapy. STUDY DESIGN Observational study METHOD 40 young adults both male and female were selected, keeping 10 students in each group of underweight, normal weight, overweight and obese. Each participant was instructed to walk over 20 meters area both indoor and outdoor at their normal pace wearing normal footwear. Step length and cadence were measured and gait velocity of each participant was calculated. Results were compared for both outdoor and indoor walk. RESULT The result of this study revealed statistically no significant differences in the measured variables between four groups, i.e. underweight, normal weight, overweight, and obese young individuals in both outdoor and indoor settings and found significant difference is indoor walk step length and gait velocity. Overweight and obese individuals have shorter step length and gait velocity, underweight individuals walk was better than other groups CONCLUSION The study shows no difference in gait in relation of BMI. There was the difference in step length and gait velocity in overweight and obese individual.


Author(s):  
Marta Gimunová ◽  
Martin Sebera ◽  
Michal Bozděch ◽  
Kateřina Kolářová ◽  
Tomáš Vodička ◽  
...  

This study aimed to analyse the kinematic differences in gait between three groups of toddlers who differed in their weeks of independent walking (IW) experience, but not in anthropometrical characteristics, to determine the relationship between walking experience without the side effect of morphological differences on gait parameters. Twenty-six toddlers participated in this study. Depending on the week of their IW, toddlers were divided into three groups: Group 1 (1–5 weeks of IW), Group 2 (6–10 weeks of IW), and Group 3 (11–15 weeks of IW). Each toddler walked barefooted over a 2-m long pathway, and 3D kinematic data were obtained. A decrease in the upper limb position, hip flexion, and step width, i.e., changes towards the adult gait pattern, were observed in Group 3. Less experienced walkers exhibited a wider step width despite no statistically significant difference in body mass and height between groups. Results of this study show no statistically significant difference in step length between groups, suggesting that step length is more related to height than to the walking experience. The increased step length in more experienced walkers reported in previous studies may therefore be a result of different heights and not walking experience.


PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0251229
Author(s):  
Cesar R. Castano ◽  
Helen J. Huang

Self-paced treadmills are being used more frequently to study humans walking with their self-selected gaits on a range of slopes. There are multiple options to purchase a treadmill with a built-in controller, or implement a custom written self-paced controller, which raises questions about how self-paced controller affect treadmill speed and gait biomechanics on multiple slopes. This study investigated how different self-paced treadmill controller sensitivities affected gait parameters and variability on decline, level, and incline slopes. We hypothesized that increasing self-paced controller sensitivity would increase gait variability on each slope. We also hypothesized that detrended variability could help mitigate differences in variability that arise from differences in speed fluctuations created by the self-paced controllers. Ten young adults walked on a self-paced treadmill using three controller sensitivities (low, medium, and high) and fixed speeds at three slopes (decline, -10°; level, 0°; incline, +10°). Within each slope, average walking speeds and spatiotemporal gait parameters were similar regardless of self-paced controller sensitivity. With higher controller sensitivities on each slope, speed fluctuations, speed variance, and step length variance increased whereas step frequency variance and step width variance were unaffected. Detrended variance was not affected by controller sensitivity suggesting that detrending variability helps mitigate differences associated with treadmill speed fluctuations. Speed-trend step length variances, however, increased with more sensitive controllers. Further, detrended step length variances were similar for self-paced and fixed speed walking, whereas self-paced walking included substantial speed-trend step length variance not present in fixed speed walking. In addition, regardless of the self-paced controller, subjects walked fastest on the level slope with the longest steps, narrowest steps, and least variance. Overall, our findings suggest that separating gait variability into speed-trend and detrended variability could be beneficial for interpreting gait variability among multiple self-paced treadmill studies and when comparing self-paced walking with fixed speed walking.


2021 ◽  
Author(s):  
Cesar R. Castano ◽  
Helen J. Huang

AbstractSelf-paced treadmills are being used more and more to study humans walking with their self-selected gaits on a range of slopes. There are multiple options to purchase a treadmill with or implement a custom written self-paced controller, which raises questions about how self-paced controller affect treadmill speed and gait biomechanics on multiple slopes. This study investigated how different self-paced treadmill controller sensitivities affected gait parameters and variability on a decline, level, and incline slopes. We hypothesized that increasing self-paced controller sensitivity would increase gait variability on each slope. We also hypothesized that detrended variability could help mitigate differences in variability that arise from differences in speed fluctuations created by the self-paced controllers. Ten young adults walked on a self-paced treadmill using three self-paced controller sensitivities (low, medium, and high) and fixed speeds at three slopes (decline, −10°; level, 0°; incline, +10°). Within each slope, average walking speeds and spatiotemporal gait parameters were similar regardless of self-paced controller sensitivity. With higher controller sensitivities on each slope, speed fluctuations, speed variance, and step length variance increased whereas step frequency variance and step width variance were unaffected. Detrended variance was not affected by controller sensitivity suggesting that detrending variability helps mitigate differences associated with treadmill speed fluctuations. Speed-trend step length variances, however, increased with more sensitive controllers. Further, detrended step length variances were similar for self-paced and fixed speed walking, whereas self-paced walking included substantial speed-trend step length variance not present in fixed speed walking. In addition, regardless of the self-paced controller, subjects walked fastest on the level slope with the longest steps, widest steps, and least variance. Overall, our findings suggest that separating gait variability into speed-trend and detrended variability could be beneficial for interpreting gait variability among multiple self-paced treadmill studies and when comparing self-paced walking with fixed speed walking.


2014 ◽  
Vol 30 (6) ◽  
pp. 685-688 ◽  
Author(s):  
Nicholas D. Parr ◽  
Chris J. Hass ◽  
Mark D. Tillman

Cellular phone texting has become increasingly popular, raising the risk of distraction-related injuries. The purpose of this study was to compare alterations in gait parameters during normal gait as opposed to walking while texting. Thirty able-bodied young adults (age = 20 ± 2 y, height = 171 ± 40 cm, mass = 61.7 ± 11.2 kg) who reported texting on a regular basis were tested using an 11-camera optical motion capture system as they walked across an 8 m, obstacle-free floor. A reduction in velocity (P < .05) was seen along with additional significant changes in spatial and temporal parameters. Specifically, step width and double stance time increased, while toe clearance, step length, and cadence decreased. Although many of the changes in spatial and temporal parameters generally accompany slowed gait, the complex distraction task used here may have amplified these potentially deleterious effects. The combination of the slower gait velocity and decrease in attention to the surrounding environment suggests that an individual who is texting while walking could be at a greater risk of injury. Tripping injuries while texting could be more likely due to the decreased toe clearance. In addition, increased step width may increase the likelihood of stepping on an unstable surface or colliding with obstacles in close proximity.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Ramon J. Boekesteijn ◽  
José M. H. Smolders ◽  
Vincent J. J. F. Busch ◽  
Alexander C. H. Geurts ◽  
Katrijn Smulders

Abstract Background Although it is well-established that osteoarthritis (OA) impairs daily-life gait, objective gait assessments are not part of routine clinical evaluation. Wearable inertial sensors provide an easily accessible and fast way to routinely evaluate gait quality in clinical settings. However, during these assessments, more complex and meaningful aspects of daily-life gait, including turning, dual-task performance, and upper body motion, are often overlooked. The aim of this study was therefore to investigate turning, dual-task performance, and upper body motion in individuals with knee or hip OA in addition to more commonly assessed spatiotemporal gait parameters using wearable sensors. Methods Gait was compared between individuals with unilateral knee (n = 25) or hip OA (n = 26) scheduled for joint replacement, and healthy controls (n = 27). For 2 min, participants walked back and forth along a 6-m trajectory making 180° turns, with and without a secondary cognitive task. Gait parameters were collected using 4 inertial measurement units on the feet and trunk. To test if dual-task gait, turning, and upper body motion had added value above spatiotemporal parameters, a factor analysis was conducted. Effect sizes were computed as standardized mean difference between OA groups and healthy controls to identify parameters from these gait domains that were sensitive to knee or hip OA. Results Four independent domains of gait were obtained: speed-spatial, speed-temporal, dual-task cost, and upper body motion. Turning parameters constituted a gait domain together with cadence. From the domains that were obtained, stride length (speed-spatial) and cadence (speed-temporal) had the strongest effect sizes for both knee and hip OA. Upper body motion (lumbar sagittal range of motion), showed a strong effect size when comparing hip OA with healthy controls. Parameters reflecting dual-task cost were not sensitive to knee or hip OA. Conclusions Besides more commonly reported spatiotemporal parameters, only upper body motion provided non-redundant and sensitive parameters representing gait adaptations in individuals with hip OA. Turning parameters were sensitive to knee and hip OA, but were not independent from speed-related gait parameters. Dual-task parameters had limited additional value for evaluating gait in knee and hip OA, although dual-task cost constituted a separate gait domain. Future steps should include testing responsiveness of these gait domains to interventions aiming to improve mobility.


Entropy ◽  
2021 ◽  
Vol 23 (7) ◽  
pp. 848
Author(s):  
Karla Miriam Reyes Leiva ◽  
Milagros Jaén-Vargas ◽  
Miguel Ángel Cuba ◽  
Sergio Sánchez Lara ◽  
José Javier Serrano Olmedo

The rehabilitation of a visually impaired person (VIP) is a systematic process where the person is provided with tools that allow them to deal with the impairment to achieve personal autonomy and independence, such as training for the use of the long cane as a tool for orientation and mobility (O&M). This process must be trained personally by specialists, leading to a limitation of human, technological and structural resources in some regions, especially those with economical narrow circumstances. A system to obtain information about the motion of the long cane and the leg using low-cost inertial sensors was developed to provide an overview of quantitative parameters such as sweeping coverage and gait analysis, that are currently visually analyzed during rehabilitation. The system was tested with 10 blindfolded volunteers in laboratory conditions following constant contact, two points touch, and three points touch travel techniques. The results indicate that the quantification system is reliable for measuring grip rotation, safety zone, sweeping amplitude and hand position using orientation angles with an accuracy of around 97.62%. However, a new method or an improvement of hardware must be developed to improve gait parameters’ measurements, since the step length measurement presented a mean accuracy of 94.62%. The system requires further development to be used as an aid in the rehabilitation process of the VIP. Now, it is a simple and low-cost technological aid that has the potential to improve the current practice of O&M.


Author(s):  
Carla Caffarelli ◽  
Maria Dea Tomai Pitinca ◽  
Antonella Al Refaie ◽  
Elena Ceccarelli ◽  
Stefano Gonnelli

Abstract Background Patients with type 2 diabetes (T2DM) have an increased or normal BMD; however fragility fractures represent one of the most important complications of T2DM. Aims This study aimed to evaluate whether the use of the Radiofrequency Echographic multi spectrometry (REMS) technique may improve the identification of osteoporosis in T2DM patients. Methods In a cohort of 90 consecutive postmenopausal elderly (70.5 ± 7.6 years) women with T2DM and in 90 healthy controls we measured BMD at the lumbar spine (LS-BMD), at femoral neck (FN-BMD) and total hip (TH-BMD) using a dual-energy X-ray absorptiometry device; moreover, REMS scans were also carried out at the same axial sites. Results DXA measurements were all higher in T2DM than in non-T2DM women; instead, all REMS measurements were lower in T2DM than in non T2DM women. Moreover, the percentage of T2DM women classified as “osteoporotic”, on the basis of BMD by REMS was markedly higher with respect to those classified by DXA (47.0% vs 28.0%, respectively). On the contrary, the percentage of T2DM women classified as osteopenic or normal by DXA was higher with respect to that by REMS (48.8% and 23.2% vs 38.6% and 14.5%, respectively). T2DM women with fragility fractures presented lower values of both BMD-LS by DXA and BMD-LS by REMS with respect to those without fractures; however, the difference was significant only for BMD-LS by REMS (p < 0.05). Conclusions Our data suggest that REMS technology may represent a useful approach to enhance the diagnosis of osteoporosis in patients with T2DM.


2021 ◽  
Vol 35 (2) ◽  
pp. 131-144
Author(s):  
Maijke van Bloemendaal ◽  
Sicco A. Bus ◽  
Frans Nollet ◽  
Alexander C. H. Geurts ◽  
Anita Beelen

Background. Many stroke survivors suffer from leg muscle paresis, resulting in asymmetrical gait patterns, negatively affecting balance control and energy cost. Interventions targeting asymmetry early after stroke may enhance recovery of walking. Objective. To determine the feasibility and preliminary efficacy of up to 10 weeks of gait training assisted by multichannel functional electrical stimulation (MFES gait training) applied to the peroneal nerve and knee flexor or extensor muscle on the recovery of gait symmetry and walking capacity in patients starting in the subacute phase after stroke. Methods. Forty inpatient participants (≤31 days after stroke) were randomized to MFES gait training (experimental group) or conventional gait training (control group). Gait training was delivered in 30-minute sessions each workday. Feasibility was determined by adherence (≥75% sessions) and satisfaction with gait training (score ≥7 out of 10). Primary outcome for efficacy was step length symmetry. Secondary outcomes included other spatiotemporal gait parameters and walking capacity (Functional Gait Assessment and 10-Meter Walk Test). Linear mixed models estimated treatment effect postintervention and at 3-month follow-up. Results. Thirty-seven participants completed the study protocol (19 experimental group participants). Feasibility was confirmed by good adherence (90% of the participants) and participant satisfaction (median score 8). Both groups improved on all outcomes over time. No significant group differences in recovery were found for any outcome. Conclusions. MFES gait training is feasible early after stroke, but MFES efficacy for improving step length symmetry, other spatiotemporal gait parameters, or walking capacity could not be demonstrated. Trial Registration. Netherlands Trial Register (NTR4762).


2020 ◽  
Vol 4 (Supplement_1) ◽  
pp. 232-233
Author(s):  
Oshadi Jayakody ◽  
Monique Breslin ◽  
Richard Beare ◽  
Velandai Srikanth ◽  
Helena Blumen ◽  
...  

Abstract Gait variability is a marker of cognitive decline. However, there is limited understanding of the cortical regions associated with gait variability. We examined associations between regional cortical thickness and gait variability in a population-based sample of older people without dementia. Participants (n=350, mean age 71.9±7.1) were randomly selected from the electoral roll. Variability in step time, step length, step width and double support time (DST) were calculated as the standard deviation of each measure, obtained from the GAITRite walkway. MRI scans were processed through FreeSurfer to obtain cortical thickness of 68 regions. Bayesian regression was used to determine regional associations of mean cortical thickness and thickness ratio (regional thickness/overall mean thickness) with gait variability. Smaller overall cortical thickness was only associated with greater step width and step time variability. Smaller mean thickness in widespread regions important for sensory, cognitive and motor functions were associated with greater step width and step time variability. In contrast, smaller thickness in a few frontal and temporal regions were associated with DST variability and the right cuneus was associated with step length variability. Smaller thickness ratio in frontal and temporal regions important for motor planning, execution and sensory function and, greater thickness ratio in the anterior cingulate was associated with greater variability in all measures. Examining individual cortical regions is important in understanding the relationship between gray matter and gait variability. Cortical thickness ratio highlights that smaller regional thickness relative to global thickness may be important for the consistency of gait.


Sign in / Sign up

Export Citation Format

Share Document