scholarly journals The Role of Interhemispheric Interactions in Cortical Plasticity

2021 ◽  
Vol 15 ◽  
Author(s):  
Jan Antoni Jablonka ◽  
Robert Binkowski ◽  
Marcin Kazmierczak ◽  
Maria Sadowska ◽  
Władysław Sredniawa ◽  
...  

Despite the fact that there is a growing awareness to the callosal connections between hemispheres the two hemispheres of the brain are commonly treated as independent structures when peripheral or cortical manipulations are applied to one of them. The contralateral hemisphere is often used as a within-animal control of plastic changes induced onto the other side of the brain. This ensures uniform conditions for producing experimental and control data, but it may overlook possible interhemispheric interactions. In this paper we provide, for the first time, direct proof that cortical, experience-dependent plasticity is not a unilateral, independent process. We mapped metabolic brain activity in rats with 2-[14C] deoxyglucose (2DG) following experience-dependent plasticity induction after a month of unilateral (left), partial whiskers deprivation (only row B was left). This resulted in ∼45% widening of the cortical sensory representation of the spared whiskers in the right, contralateral barrel field (BF). We show that the width of 2DG visualized representation is less than 20% when only contralateral stimulation of the spared row of whiskers is applied in immobilized animals. This means that cortical map remodeling, which is induced by experience-dependent plasticity mechanisms, depends partially on the contralateral hemisphere. The response, which is observed by 2DG brain mapping in the partially deprived BF after standard synchronous bilateral whiskers stimulation, is therefore the outcome of at least two separately activated plasticity mechanisms. A focus on the integrated nature of cortical plasticity, which is the outcome of the emergent interactions between deprived and non-deprived areas in both hemispheres may have important implications for learning and rehabilitation. There is also a clear implication that there is nothing like “control hemisphere” since any plastic changes in one hemisphere have to have influence on functioning of the opposite one.

This is a data visualization art piece using 10 seconds of mind waves recordings of the human, captured with EEG sensor.10 seconds of Alpha, Beta, Gamma & Theta brain waves while meditating are recorded, the different wave channels are categorized to state when the right brain representing artistic brain activity, isolating the ranges for each channel when the brain channels were more meditating and imaginative. Based on the waves of the brain obtained, we will be able to deduce few attributes such as attention span and mood. The moods we will be trying to assess and display here the level of happiness, sadness, anger along with attention span and meditation level (Concentration level).


2021 ◽  
Vol 19 (3) ◽  
pp. 17-25
Author(s):  
Dr. Sohail Adnan ◽  
Dr. Mubasher Shah ◽  
Dr. Syed Fahim Shah ◽  
Dr. Fahad Naim ◽  
Dr. Akhtar Ali ◽  
...  

Background: Consciousness has remained a difficult problem for the scientists to explore its relationship to the brain activity. This is the first paper that presents the significance of focal areas of the cerebral cortex for consciousness. Objectives: To determine if consciousness is produced by the activity of the whole brain or one of its focal areas. Methods: We have performed a prospective cross-sectional study in eighty patients of acute ischemic stroke. The neurovascular territory of the middle cerebral artery (MCA) was sectioned into four similar areas. The association of any of these focal areas to consciousness was observed after their dysfunction with ischemic strokes. Results: Of the eighty patients, 57.5 % were males and 42.5 % were females. Mean age was 63 years ± 7 SD. The righthanded patients were 90 % (72) of the whole sample. Focal areas of the right MCA were generally less prone to consciousness disorder. Average statistics of the focal infarctions of the right MCA showed no tendency for consciousness disorder on the Glasgow coma scale (GCS) [Mean GCS of all focal areas; 14.5, SD; 0.71, 95 % CI; 14.27 to 14.72, P= 0.0000004]. Altered consciousness with focal infarctions of the territory of left MCA was also less likely [Mean GCS of all focal areas; 14.2, SD; 1.01, 95 % CI; 13.88 to 14.51, P= 0.0004]. Conclusion: Consciousness is not determined by the activity of a focal area of the cerebral cortex. Perhaps, we get our consciousness from the activity of “Neuronal Network of Coordination”.


Author(s):  
Jan Christoph Bublitz

Whether there are intrinsic differences between different means to intervene into brains and minds is a key question of neuroethics, which any future legal regulation of mind-interventions has to face. This chapter affirms such differences by a twofold argument:. First, it present differences between direct (biological, physiological) and indirect (psychological) interventions that are not based on crude mind–brain dualisms or dubious properties such as naturalness of interventions. Second, it shows why these differences (should) matter for the law. In a nutshell, this chapter suggests that indirect interventions should be understood as stimuli that persons perceive through their external senses whereas direct interventions reach brains and minds on different, nonperceptual routes. Interventions primarily differ in virtue of their causal pathways. Because of them, persons have different kinds and amounts of control over interventions; direct interventions regularly bypass resistance and control of recipients. Direct interventions also differ from indirect ones because they misappropriate mechanisms of the brain. These differences bear normative relevance in light of the right to mental self-determination, which should be the guiding normative principle with respect to mind-interventions. As a consequence, the law should adopt by and large a normative—not ontological—dualism between interventions into other minds: nonconsensual direct interventions into other minds should be prohibited by law, with few exceptions. By contrast, indirect interventions should be prima facie permissible, primarily those that qualify as exercises of free speech. The chapter also addresses a range of recent objections, especially by Levy (in the previous chapter).


2020 ◽  
Vol 11 ◽  
Author(s):  
Wanghuan Dun ◽  
Tongtong Fan ◽  
Qiming Wang ◽  
Ke Wang ◽  
Jing Yang ◽  
...  

Empathy refers to the ability to understand someone else's emotions and fluctuates with the current state in healthy individuals. However, little is known about the neural network of empathy in clinical populations at different pain states. The current study aimed to examine the effects of long-term pain on empathy-related networks and whether empathy varied at different pain states by studying primary dysmenorrhea (PDM) patients. Multivariate partial least squares was employed in 46 PDM women and 46 healthy controls (HC) during periovulatory, luteal, and menstruation phases. We identified neural networks associated with different aspects of empathy in both groups. Part of the obtained empathy-related network in PDM exhibited a similar activity compared with HC, including the right anterior insula and other regions, whereas others have an opposite activity in PDM, including the inferior frontal gyrus and right inferior parietal lobule. These results indicated an abnormal regulation to empathy in PDM. Furthermore, there was no difference in empathy association patterns in PDM between the pain and pain-free states. This study suggested that long-term pain experience may lead to an abnormal function of the brain network for empathy processing that did not vary with the pain or pain-free state across the menstrual cycle.


2011 ◽  
Vol 23 (11) ◽  
pp. 3620-3636 ◽  
Author(s):  
David B. Miele ◽  
Tor D. Wager ◽  
Jason P. Mitchell ◽  
Janet Metcalfe

Judgments of agency refer to people's self-reflective assessments concerning their own control: their assessments of the extent to which they themselves are responsible for an action. These self-reflective metacognitive judgments can be distinguished from action monitoring, which involves the detection of the divergence (or lack of divergence) between observed states and expected states. Presumably, people form judgments of agency by metacognitively reflecting on the output of their action monitoring and then consciously inferring the extent to which they caused the action in question. Although a number of previous imaging studies have been directed at action monitoring, none have assessed judgments of agency as a potentially separate process. The present fMRI study used an agency paradigm that not only allowed us to examine the brain activity associated with action monitoring but that also enabled us to investigate those regions associated with metacognition of agency. Regarding action monitoring, we found that being “out of control” during the task (i.e., detection of a discrepancy between observed and expected states) was associated with increased brain activity in the right TPJ, whereas being “in control” was associated with increased activity in the pre-SMA, rostral cingulate zone, and dorsal striatum (regions linked to self-initiated action). In contrast, when participants made self-reflective metacognitive judgments about the extent of their own control (i.e., judgments of agency) compared with when they made judgments that were not about control (i.e., judgments of performance), increased activity was observed in the anterior PFC, a region associated with self-reflective processing. These results indicate that action monitoring is dissociable from people's conscious self-attributions of control.


2013 ◽  
Vol 109 (2) ◽  
pp. 405-414 ◽  
Author(s):  
Luís Aureliano Imbiriba ◽  
Maitê Mello Russo ◽  
Laura Alice Santos de Oliveira ◽  
Ana Paula Fontana ◽  
Erika de Carvalho Rodrigues ◽  
...  

It is well established that the mental simulation of actions involves visual and/or somatomotor representations of those imagined actions. To investigate whether the total absence of vision affects the brain activity associated with the retrieval of motor representations, we recorded the readiness potential (RP), a marker of motor preparation preceding the execution, as well as the motor imagery of the right middle-finger extension in the first-person (1P; imagining oneself performing the movement) and in the third-person (3P; imagining the experimenter performing the movement) modes in 19 sighted and 10 congenitally blind subjects. Our main result was found for the single RP slope values at the Cz channel (likely corresponding to the supplementary motor area). No difference in RP slope was found between 1P and 3P in the sighted group, suggesting that similar motor preparation networks are recruited to simulate our own and other people's actions in spite of explicit instructions to perform the task in 1P or 3P. Conversely, reduced RP slopes in 3P compared with 1P found in the blind group indicated that they might have used an alternative, nonmotor strategy to perform the task in 3P. Moreover, movement imagery ability, assessed both by means of mental chronometry and a modified version of the Movement Imagery Questionnaire-Revised, indicated that blind and sighted individuals had similar motor imagery performance. Taken together, these results suggest that complete visual loss early in life modifies the brain networks that associate with others' action representations.


Author(s):  
B. Naresh ◽  
S. Rambabu ◽  
D. Khalandar Basha

<span>This paper discussed about EEG-Based Drowsiness Tracking during Distracted Driving based on Brain computer interfaces (BCI). BCIs are systems that can bypass conventional channels of communication (i.e., muscles and thoughts) to provide direct communication and control between the human brain and physical devices by translating different patterns of brain activity commands through controller device in real time. With these signals from brain in mat lab signals spectrum analyzed and estimates driver concentration and meditation conditions. If there is any nearest vehicles to this vehicle a voice alert given to driver for alert. And driver going to sleep gives voice alert for driver using voice chip. And give the information about traffic signal indication using RFID. The patterns of interaction between these neurons are represented as thoughts and emotional states. According to the human feelings, this pattern will be changing which in turn produce different electrical waves. A muscle contraction will also generate a unique electrical signal. All these electrical waves will be sensed by the brain wave sensor and it will convert the data into packets and transmit through Bluetooth medium. Level analyzer unit (LAU) is used to receive the raw data from brain wave sensor and it is used to extract and process the signal using Mat lab platform. The nearest vehicles information is information is taken through ultrasonic sensors and gives voice alert. And traffic signals condition is detected through RF technology.</span>


2021 ◽  
Author(s):  
Luis M. Franco ◽  
Emre Yaksi

ABSTRACTOngoing neural activity has been observed across several brain regions and thought to reflect the internal state of the brain. Yet, it is not fully understood how ongoing brain activity interacts with sensory experience and shape sensory representations. Here, we show that projection neurons of the fruit fly antennal lobe exhibit spatiotemporally organized ongoing activity in the absence of odor stimulation. Upon repeated exposure to odors, we observe a gradual and long-lasting decrease in the amplitude and frequency of spontaneous calcium events, as well as a reorganization of correlations between olfactory glomeruli during ongoing activity. Accompanying these plastic changes, we find that repeated odor experience reduces trial-to-trial variability and enhances the specificity of odor representations. Our results reveal a previously undescribed experience-dependent plasticity of ongoing and sensory driven activity at peripheral levels of the fruit fly olfactory system.


HortScience ◽  
2021 ◽  
pp. 1-6
Author(s):  
Seon-Ok Kim ◽  
Ji-Eun Jeong ◽  
Yun-Ah Oh ◽  
Ha-Ram Kim ◽  
Sin-Ae Park

This study aimed to compare the brain activity and emotional states of elementary school students during horticultural and nonhorticultural activities. A total of 30 participants with a mean age of 11.4 ± 1.3 years were included. This experiment was conducted at Konkuk University campus in Korea. Participants performed horticultural activities such as harvesting, planting, sowing seeds, and mixing soil. Nonhorticultural activities included playing with a ball, solving math problems, watching animation videos, folding paper, and reading a book. The study had a crossover experimental design. Brain activity of the prefrontal lobes was measured by electroencephalography during each activity for 3 minutes. On completion of each activity, participants answered a subjective emotion questionnaire using the semantic differential method (SDM). Results showed that relative theta (RT) power spectrum was significantly lower in both prefrontal lobes of participants when engaged in harvesting and reading a book. The relative mid beta (RMB) power spectrum was significantly higher in both prefrontal lobes when participants engaged in harvesting and playing with a ball. The ratio of the RMB power spectrum to the RT power spectrum reflects concentration. This ratio increased during harvesting activity, indicating that children’s concentration also increased. The sensorimotor rhythm (SMR) from mid beta to theta (RSMT), another indicator of concentration, was significantly higher in the right prefrontal lobe during harvesting than during other activities. Furthermore, SDM results showed that the participants felt more natural and relaxed when performing horticultural activities than nonhorticultural activities. Horticultural activities may improve brain activity and psychological relaxation in children. Harvesting activity was most effective for improving children’s concentration compared with nonhorticultural activities.


2020 ◽  
Vol 15 (12) ◽  
pp. 1326-1335
Author(s):  
Zhihao Wang ◽  
Yiwen Wang ◽  
Xiaolin Zhou ◽  
Rongjun Yu

Abstract People commonly use bluffing as a strategy to manipulate other people’s beliefs about them for gain. Although bluffing is an important part of successful strategic thinking, the inter-brain mechanisms underlying bluffing remain unclear. Here, we employed a functional near-infrared spectroscopy hyperscanning technique to simultaneously record the brain activity in the right temporal-parietal junction in 32 pairs of participants when they played a bluffing game against each other or with computer opponents separately. We also manipulated the penalty for bluffing (high vs low). Under the condition of high relative to low penalty, results showed a higher bluffing rate and a higher calling rate in human-to-human as compared to human-to-computer pairing. At the neural level, high relative to low penalty condition increased the interpersonal brain synchronization (IBS) in the right angular gyrus (rAG) during human-to-human as compared to human-to-computer interaction. Importantly, bluffing relative to non-bluffing, under the high penalty and human-to-human condition, resulted in an increase in response time and enhanced IBS in the rAG. Participants who bluffed more frequently also elicited stronger IBS. Our findings support the view that regions associated with mentalizing become synchronized during bluffing games, especially under the high penalty and human-to-human condition.


Sign in / Sign up

Export Citation Format

Share Document