scholarly journals Multimodal Brain Network Jointly Construction and Fusion for Diagnosis of Epilepsy

2021 ◽  
Vol 15 ◽  
Author(s):  
Qi Zhu ◽  
Jing Yang ◽  
Bingliang Xu ◽  
Zhenghua Hou ◽  
Liang Sun ◽  
...  

Brain network analysis has been proved to be one of the most effective methods in brain disease diagnosis. In order to construct discriminative brain networks and improve the performance of disease diagnosis, many machine learning–based methods have been proposed. Recent studies show that combining functional and structural brain networks is more effective than using only single modality data. However, in the most of existing multi-modal brain network analysis methods, it is a common strategy that constructs functional and structural network separately, which is difficult to embed complementary information of different modalities of brain network. To address this issue, we propose a unified brain network construction algorithm, which jointly learns both functional and structural data and effectively face the connectivity and node features for improving classification. First, we conduct space alignment and brain network construction under a unified framework, and then build the correlation model among all brain regions with functional data by low-rank representation so that the global brain region correlation can be captured. Simultaneously, the local manifold with structural data is embedded into this model to preserve the local structural information. Second, the PageRank algorithm is adaptively used to evaluate the significance of different brain regions, in which the interaction of multiple brain regions is considered. Finally, a multi-kernel strategy is utilized to solve the data heterogeneity problem and merge the connectivity as well as node information for classification. We apply the proposed method to the diagnosis of epilepsy, and the experimental results show that our method can achieve a promising performance.

Author(s):  
Mingliang Wang ◽  
Jiashuang Huang ◽  
Mingxia Liu ◽  
Daoqiang Zhang

Brain network analysis can help reveal the pathological basis of neurological disorders and facilitate automated diagnosis of brain diseases, by exploring connectivity patterns in the human brain. Effectively representing the brain network has always been the fundamental task of computeraided brain network analysis. Previous studies typically utilize human-engineered features to represent brain connectivity networks, but these features may not be well coordinated with subsequent classifiers. Besides, brain networks are often equipped with multiple hubs (i.e., nodes occupying a central position in the overall organization of a network), providing essential clues to describe connectivity patterns. However, existing studies often fail to explore such hubs from brain connectivity networks. To address these two issues, we propose a Connectivity Network analysis method with discriminative Hub Detection (CNHD) for brain disease diagnosis using functional magnetic resonance imaging (fMRI) data. Specifically, we incorporate both feature extraction of brain networks and network-based classification into a unified model, while discriminative hubs can be automatically identified from data via ℓ1-norm and ℓ2,1-norm regularizers. The proposed CNHD method is evaluated on three real-world schizophrenia datasets with fMRI scans. Experimental results demonstrate that our method not only outperforms several state-of-the-art approaches in disease diagnosis, but also is effective in automatically identifying disease-related network hubs in the human brain.


Complexity ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-27 ◽  
Author(s):  
Jin Liu ◽  
Min Li ◽  
Yi Pan ◽  
Wei Lan ◽  
Ruiqing Zheng ◽  
...  

It is well known that most brain disorders are complex diseases, such as Alzheimer’s disease (AD) and schizophrenia (SCZ). In general, brain regions and their interactions can be modeled as complex brain network, which describe highly efficient information transmission in a brain. Therefore, complex brain network analysis plays an important role in the study of complex brain diseases. With the development of noninvasive neuroimaging and electrophysiological techniques, experimental data can be produced for constructing complex brain networks. In recent years, researchers have found that brain networks constructed by using neuroimaging data and electrophysiological data have many important topological properties, such as small-world property, modularity, and rich club. More importantly, many brain disorders have been found to be associated with the abnormal topological structures of brain networks. These findings provide not only a new perspective to explore the pathological mechanisms of brain disorders, but also guidance for early diagnosis and treatment of brain disorders. The purpose of this survey is to provide a comprehensive overview for complex brain network analysis and its applications to brain disorders.


2019 ◽  
Author(s):  
D. Vidaurre ◽  
A. Llera ◽  
S.M. Smith ◽  
M.W. Woolrich

AbstractHow spontaneously fluctuating functional magnetic resonance imaging (fMRI) signals in different brain regions relate to behaviour has been an open question for decades. Correlations in these signals, known as functional connectivity, can be averaged over several minutes of data to provide a stable representation of the functional network architecture for an individual. However, associations between these stable features and behavioural traits have been shown to be dominated by individual differences in anatomy. Here, using kernel learning tools, we propose methods to assess and compare the relation between time-varying functional connectivity, time-averaged functional connectivity, structural brain data, and non-imaging subject behavioural traits. We applied these methods on Human Connectome Project resting-state fMRI data to show that time-varying fMRI functional connectivity, detected at time-scales of a few seconds, has associations with some behavioural traits that are not dominated by anatomy. Despite time-averaged functional connectivity accounting for the largest proportion of variability in the fMRI signal between individuals, we found that some aspects of intelligence could only be explained by time-varying functional connectivity. The finding that time-varying fMRI functional connectivity has a unique relationship to population behavioural variability suggests that it might reflect transient neuronal communication fluctuating around a stable neural architecture.Significance statementComplex cognition is dynamic and emerges from the interaction between multiple areas across the whole brain, i.e. from brain networks. Hence, the utility of functional MRI to investigate brain activity depends on how well it can capture time-varying network interactions. Here, we develop methods to predict behavioural traits of individuals from either time-varying functional connectivity, time-averaged functional connectivity, or structural brain data. We use these to show that the time-varying nature of functional brain networks in fMRI can be reliably measured and can explain aspects of behaviour not captured by structural data or time-averaged functional connectivity. These results provide important insights to the question of how the brain represents information and how these representations can be measured with fMRI.


2019 ◽  
Author(s):  
Mengjia Xu ◽  
Zhijiang Wang ◽  
Haifeng Zhang ◽  
Dimitrios Pantazis ◽  
Huali Wang ◽  
...  

AbstractIdentifying heterogeneous cognitive impairment markers at an early stage is vital for Alzheimer’s disease diagnosis. However, due to complex and uncertain brain connectivity features in the cognitive domains, it remains challenging to quantify functional brain connectomic changes during non-pharmacological interventions for amnestic mild cognitive impairment (aMCI) patients. We present a new quantitative functional brain network analysis of fMRI data based on the multi-graph unsupervised Gaussian embedding method (MG2G). This neural network-based model can effectively learn low-dimensional Gaussian distributions from the original high-dimensional sparse functional brain networks, quantify uncertainties in link prediction, and discover the intrinsic dimensionality of brain networks. Using the Wasserstein distance to measure probabilistic changes, we discovered that brain regions in the default mode network and somatosensory/somatomotor hand, fronto-parietal task control, memory retrieval, and visual and dorsal attention systems had relatively large variations during non-pharmacological training, which might provide distinct biomarkers for fine-grained monitoring of aMCI cognitive alteration.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Rieke Fruengel ◽  
Timo Bröhl ◽  
Thorsten Rings ◽  
Klaus Lehnertz

AbstractPrevious research has indicated that temporal changes of centrality of specific nodes in human evolving large-scale epileptic brain networks carry information predictive of impending seizures. Centrality is a fundamental network-theoretical concept that allows one to assess the role a node plays in a network. This concept allows for various interpretations, which is reflected in a number of centrality indices. Here we aim to achieve a more general understanding of local and global network reconfigurations during the pre-seizure period as indicated by changes of different node centrality indices. To this end, we investigate—in a time-resolved manner—evolving large-scale epileptic brain networks that we derived from multi-day, multi-electrode intracranial electroencephalograpic recordings from a large but inhomogeneous group of subjects with pharmacoresistant epilepsies with different anatomical origins. We estimate multiple centrality indices to assess the various roles the nodes play while the networks transit from the seizure-free to the pre-seizure period. Our findings allow us to formulate several major scenarios for the reconfiguration of an evolving epileptic brain network prior to seizures, which indicate that there is likely not a single network mechanism underlying seizure generation. Rather, local and global aspects of the pre-seizure network reconfiguration affect virtually all network constituents, from the various brain regions to the functional connections between them.


2019 ◽  
Vol 3 (2) ◽  
pp. 539-550 ◽  
Author(s):  
Véronique Paban ◽  
Julien Modolo ◽  
Ahmad Mheich ◽  
Mahmoud Hassan

We aimed at identifying the potential relationship between the dynamical properties of the human functional network at rest and one of the most prominent traits of personality, namely resilience. To tackle this issue, we used resting-state EEG data recorded from 45 healthy subjects. Resilience was quantified using the 10-item Connor-Davidson Resilience Scale (CD-RISC). By using a sliding windows approach, brain networks in each EEG frequency band (delta, theta, alpha, and beta) were constructed using the EEG source-space connectivity method. Brain networks dynamics were evaluated using the network flexibility, linked with the tendency of a given node to change its modular affiliation over time. The results revealed a negative correlation between the psychological resilience and the brain network flexibility for a limited number of brain regions within the delta, alpha, and beta bands. This study provides evidence that network flexibility, a metric of dynamic functional networks, is strongly correlated with psychological resilience as assessed from personality testing. Beyond this proof-of-principle that reliable EEG-based quantities representative of personality traits can be identified, this motivates further investigation regarding the full spectrum of personality aspects and their relationship with functional networks.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Xin Wang ◽  
Yanshuang Ren ◽  
Wensheng Zhang

Study of functional brain network (FBN) based on functional magnetic resonance imaging (fMRI) has proved successful in depression disorder classification. One popular approach to construct FBN is Pearson correlation. However, it only captures pairwise relationship between brain regions, while it ignores the influence of other brain regions. Another common issue existing in many depression disorder classification methods is applying only single local feature extracted from constructed FBN. To address these issues, we develop a new method to classify fMRI data of patients with depression and healthy controls. First, we construct the FBN using a sparse low-rank model, which considers the relationship between two brain regions given all the other brain regions. Moreover, it can automatically remove weak relationship and retain the modular structure of FBN. Secondly, FBN are effectively measured by eight graph-based features from different aspects. Tested on fMRI data of 31 patients with depression and 29 healthy controls, our method achieves 95% accuracy, 96.77% sensitivity, and 93.10% specificity, which outperforms the Pearson correlation FBN and sparse FBN. In addition, the combination of graph-based features in our method further improves classification performance. Moreover, we explore the discriminative brain regions that contribute to depression disorder classification, which can help understand the pathogenesis of depression disorder.


Author(s):  
A. Thushara ◽  
C. Ushadevi Amma ◽  
Ansamma John

Alzheimer’s Disease (AD) is basically a progressive neurodegenerative disorder associated with abnormal brain networks that affect millions of elderly people and degrades their quality of life. The abnormalities in brain networks are due to the disruption of White Matter (WM) fiber tracts that connect the brain regions. Diffusion-Weighted Imaging (DWI) captures the brain’s WM integrity. Here, the correlation betwixt the WM degeneration and also AD is investigated by utilizing graph theory as well as Machine Learning (ML) algorithms. By using the DW image obtained from Alzheimer’s Disease Neuroimaging Initiative (ADNI) database, the brain graph of each subject is constructed. The features extracted from the brain graph form the basis to differentiate between Mild Cognitive Impairment (MCI), Control Normal (CN) and AD subjects. Performance evaluation is done using binary and multiclass classification algorithms and obtained an accuracy that outperforms the current top-notch DWI-based studies.


Author(s):  
Kaixin Yu ◽  
Xuetong Wang ◽  
Qiongling Li ◽  
Xiaohui Zhang ◽  
Xinwei Li ◽  
...  

2021 ◽  
Author(s):  
Mangor Pedersen ◽  
Andrew Zalesky

SummaryThe extent to which resting-state fMRI (rsfMRI) reflects direct neuronal changes remains unknown. Using 160 simultaneous rsfMRI and intracranial brain stimulation recordings acquired in 26 individuals with epilepsy (with varying electrode locations), we tested whether brain networks dynamically change during intracranial brain stimulation, aiming to establish whether switching between brain networks is reduced during intracranial brain stimulation. As the brain spontaneously switches between a repertoire of intrinsic functional network configurations and the rate of switching is typically increased in brain disorders, we hypothesised that intracranial stimulation would reduce the brain’s switching rate, thus potentially normalising aberrant brain network dynamics. To test this hypothesis, we quantified the rate that brain regions changed networks over time in response to brain stimulation, using network switching applied to multilayer modularity analysis of time-resolved rsfMRI connectivity. Network switching was significantly decreased during epochs with brain stimulation compared to epochs with no brain stimulation. The initial stimulation onset of brain stimulation was associated with the greatest decrease in network switching, followed by a more consistent reduction in network switching throughout the scans. These changes were most commonly observed in cortical networks spatially distant from the stimulation targets. Our results suggest that neuronal perturbation is likely to modulate large-scale brain networks, and multilayer network modelling may be used to inform the clinical efficacy of brain stimulation in neurological disease.HighlightsrsfMRI network switching is attenuated during intracranial brain stimulationStimulation-induced switching is observed distant from electrode targetsOur results are validated across a range of network parametersNetwork models may inform clinical efficacy of brain stimulation


Sign in / Sign up

Export Citation Format

Share Document