scholarly journals Comprehensively Analyzed Macrophage-Regulated Genes Indicate That PSMA2 Promotes Colorectal Cancer Progression

2021 ◽  
Vol 10 ◽  
Author(s):  
Jingbo Qi ◽  
Zhiqiu Hu ◽  
Shaoqun Liu ◽  
Fan Li ◽  
Sheng Wang ◽  
...  

Colorectal cancer (CRC) is the third most common cancer worldwide. Here, we identified tumor-associated macrophages (TAMs) as regulators of genes in CRC. In total, the expressions of 457 genes were dysregulated after TAM coculture; specifically, 344 genes were up-regulated, and 113 genes were down-regulated. Bioinformatic analysis implied that these TAM-related genes were associated with regulation of the processes of macromolecule metabolism, apoptosis, cell death, programmed cell death, and the response to stress. To further uncover the interplay among these proteins, we constructed a PPI network; 15 key regulators were identified in CRC, including VEGFA, FN1, JUN, CDH1, MAPK8, and FOS. Among the identified genes, we focused on PSMA2 and conducted loss-of-function experiments to validate the functions of PSMA2 in CRC. To further determine the mechanism by which PSMA2 affected CRC, we conducted multiple assays in CRC cell lines and tissues. PSMA2 enhanced the proliferation, migration and invasion of CRC cells. Moreover, our data indicated that PSMA2 expression was dramatically increased in stage 1, stage 2, stage 3, and stage 4 CRC samples. Our data indicated that PSMA2 was one target of miR-132. A miR-132 mimic greatly hindered CRC cell proliferation. In addition, the luciferase assay results revealed that miR-132 directly regulated PSMA2. Moreover, our data indicated that miR-132 expression was greatly decreased in CRC samples, which was associated with longer survival times of CRC patients, implying that miR-132 was a probable biomarker for CRC. Collectively, these data indicate that PSMA2 is a promising target for the therapy of CRC.

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Fangfang Yang ◽  
Hua Wang ◽  
Bianbian Yan ◽  
Tong Li ◽  
Lulu Min ◽  
...  

Abstract The molecular pathogenesis of colorectal cancer (CRC) has been widely investigated in recent years. Accumulating evidence has indicated that microRNA (miRNA) dysregulation participates in the processes of driving CRC initiation and progression. Aberrant expression of miR-1301 has been found in various tumor types. However, its role in CRC remains to be elucidated. In the present study, we identified miR-1301 was enriched in normal colorectal tissues and significantly down-regulated in CRC. Decreased level of miR-1301 strongly correlated with aggressive pathological characteristics, including advanced stage and metastasis. Bioinformatics and dual luciferase assay demonstrated that STAT3 is a direct target of miR-1301. Gain and loss-of-function assays showed that miR-1301 had no effect on cell proliferation. Overexpression of miR-1301 suppressed cell migration and invasion capacity of pSTA3-positive LoVo cells, but not pSTAT3-negative SW480 cells, while inhibition of miR-1301 consistently promoted cell migration and invasion in both cell lines. Additionally, miR-1301 inhibition restored the suppressed migration and invasion of STAT3- knockdown LoVo cells. MiR-1301 functioned as a tumor suppressor to modulate the IL6/STAT3 signaling pathway. In summary, this study highlights the significant role of miR- 1301/STAT3 axis in CRC metastasis.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yu-Nan Ma ◽  
Yong-Gang Hong ◽  
Guan-Yu Yu ◽  
Si-yuan Jiang ◽  
Bo-lun Zhao ◽  
...  

Abstract Background Recent reports suggest that the long non-coding RNA LBX2 antisense RNA 1 (LBX2-AS1) acts as an important regulator in cancer progression, but its significance in colorectal cancer (CRC) remains undetermined. Methods LBX2-AS1 expression levels in CRC were determined from the GEPIA database and CRC tissues to investigate clinical relevance. meRIP-PCR assays investigated the molecular mechanisms underlying the function of m6A in LBX2-AS1. Loss of function experiments was used to define the role of LBX2-AS1 in the progression of CRC. The ceRNA function of LBX2-AS1 was evaluated by RNA immunoprecipitation. In vitro and PDX models were used to determine if LBX2-AS1 promotes 5-fluorouracil resistance. Results Data from the TCGA and our institutional patient cohorts established that LBX2-AS1 levels were significantly upregulated in most CRC tissues relative to normal adjacent colon tissues. Moreover, LBX2-AS1 levels were positively correlated with aggressive disease characteristics, constituting an independent prognostic indicator of overall patient survival. Mechanistic investigations suggested that the increased LBX2-AS1 in CRC was mediated by METTL3-dependent m6A methylation. In vitro experiments indicated that knockdown of LBX2-AS1 inhibited CRC proliferation, migration and invasion with this phenotype linked to LBX2-AS1-mediated regulation of AKT1, acting as a ceRNA to sponge miR-422a. Ex vivo analysis of patient-derived CRC xenografts showed that low LBX2-AS1 expression cases exhibited 5-FU responsiveness and clinical investigations confirmed that low LBX2-AS1 expression was associated with improved clinical benefits from 5-FU therapy. Conclusions Together these results suggest that LBX2-AS1 may serve as a therapeutic target and predictor of 5-FU benefit in CRC patients.


2016 ◽  
Vol 36 (3) ◽  
Author(s):  
Longci Sun ◽  
Hanbing Xue ◽  
Chunhui Jiang ◽  
Hong Zhou ◽  
Lei Gu ◽  
...  

This article aims to find the key long non-coding RNAs (LncRNAs) associated with colorectal cancer (CRC) and to study its biological functions in colorectal cancer progression. Our study has shown that upregulated LncRNA DQ786243 can regulate cell proliferation, cell cycle progression, cell apoptosis, migration, and invasion in CRC cells. Xenograft experiments confirmed that the growth of xenograft tumors formed by CRC cells was suppressed after silencing LncRNA DQ786243 expression. In conclusion, our study suggests that LncRNA DQ786243 is an oncogene that promotes tumor progression and leads us to propose that LncRNAs may serve as key regulatory hubs in CRC progression.


Author(s):  
Xinyang Lu ◽  
Zhiqiang Liu ◽  
Xiaofei Ning ◽  
Lunhua Huang ◽  
Biao Jiang

The long noncoding RNA HOX transcript antisense RNA (HOTAIR) has been found to be overexpressed in many human malignancies and involved in tumor progression and metastasis. Although the downstream target through which HOTAIR modulates tumor metastasis is not well known, evidence suggests that microRNA-197 (miR-197) might be involved in this event. In the present study, the significance of HOTAIR and miR-197 in the progression of colorectal cancer was detected in vitro and in vivo. We found that HOTAIR expression was significantly increased in colorectal cancer cells and tissues. In contrast, the expression of miR-197 was obviously decreased. We further demonstrated that HOTAIR knockdown promoted apoptosis and inhibited cell proliferation, migration, and invasion in vitro and in vivo. Moreover, HOTAIR modulated the progression of colorectal cancer by competitively binding miR-197. Taken together, our study has identified a novel pathway through which HOTAIR exerts its oncogenic role and provided a molecular basis for potential applications of HOTAIR in the prognosis and treatment of colorectal cancer.


2019 ◽  
Vol 167 (1) ◽  
pp. 55-65 ◽  
Author(s):  
Fu-Lai Pei ◽  
Ming-Zheng Cao ◽  
Yue-Feng Li

Abstract Accumulating researches have confirmed that circRNA abnormal expression plays a prominent role in the progression of colorectal cancer (CRC). The role of circ_0000218 in CRC and its potential mechanism are not clear. In this study, real-time polymerase chain reaction (RT-PCR) was employed to measure the circ_0000218, miR-139-3p and RAB1A mRNA expression in CRC tissues and cells. Immunohistochemistry and western blot were conducted to determine the RAB1A expression in CRC tissues and cells, respectively. Colony formation assay and BrdU method were employed to monitor the effect of circ_0000218 on cell proliferation. Transwell assay was adopted to detect cell migration and invasion. Dual luciferase reporter assay and RNA immunoprecipitation assay were adopted to confirm the targeting relationship between circ_0000218 and miR-139-3p, miR-139-3p and RAB1A. We demonstrated that circ_0000218 was notably upregulated in CRC tissues and cell lines, and its high expression level was markedly linked to the increase of T staging and local lymph node metastasis. Circ_0000218 overexpression enhanced the proliferation and metastasis of CRC cells while knocking down circ_0000218 caused the opposite effects. We also observed that miR-139-3p was negatively regulated by circ_0000218, while RAB1A was positively regulated by it. Collectively, this study suggested that circ_0000218 upregulated RAB1A and promoted CRC proliferation and metastasis via sponging miR-139-3p.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Ning Wang ◽  
Jun Li ◽  
Ju He ◽  
Yong-Guang Jing ◽  
Wei-dong Zhao ◽  
...  

Great concerns have raised crucial roles of long noncoding RNAs (lncRNAs) on colorectal cancer progression due to the increasing number of studies in cancer development. Previous studies reveal that lncRNA CCAT1 plays an important role in the progression of a variety of cancers. However, the role of lncRNA CCAT1 in colorectal cancer is still unclear. In this study, we found that in both colorectal tissues and cell lines the level of lncRNA CCAT1 was increased. Downregulation of lncRNA CCAT1 inhibited the proliferation, migration, and invasion of colorectal cell lines and promoted apoptosis. We then found that hsa-miR-4679 could bind to lncRNA CCAT1 directly, and with further functional analyses, we confirmed that lncRNA CCAT1 sponged hsa-miR-4679 to promote the progression of colorectal cancer. Next, we found that hsa-miR-4679 was directly bound to 3 ′ UTR of GNG10 (guanine nucleotide-binding protein, gamma 10). GNG10 overexpression promoted the progression of colorectal cancer, and this phenotype could be reversed by miR-4679 mimics. At last, we knocked down CCAT1 in vivo and found that sh-CCAT1 reduced the tumor size and the number of proliferating cells. In summary, our findings revealed that lncRNA CCAT1 facilitated colorectal cancer progression via the hsa-miR-4679/GNG10 axis and provided new potential therapeutic targets for colorectal cancer.


2020 ◽  
Author(s):  
Ting Yang ◽  
Wei-Cong Chen ◽  
Pei-Cong Shi ◽  
Man-Ru Liu ◽  
Tao Jiang ◽  
...  

Abstract Background: Long noncoding RNAs (lncRNAs) are considered critical regulators in cancers; however, the clinical significance and mechanisms of MAPKAPK5-AS1 (hereinafter referred to as MK5-AS1) in colorectal cancer (CRC) remain mostly unknown.Methods: In this study, quantitative real-time PCR (qPCR) and western blotting were utilized to detect the levels of MK5-AS1, let-7f-1-3p and MK5 (MAPK activated protein kinase 5) in CRC tissues and cell lines. The biological functions of MK5-AS1, let-7f-1-3p and MK5 in CRC cells were explored using Cell Counting Kit-8 (CCK8), colony formation and transwell assays. The potential mechanisms of MK5-AS1 were evaluated by RNA pull-down, RNA immunoprecipitation (RIP), dual luciferase reporter assay, chromatin immunoprecipitation (CHIP) and bioinformatics analysis. The effects of MK5-AS1 and MK5 on CRC were investigated by a xenotransplantation model. Results: We confirmed that MK5-AS1 was significantly increased in CRC tissues. Knockdown of MK5-AS1 suppressed cell migration and invasion in vitro and inhibited lung metastasis in mice. Mechanistically, MK5-AS1 regulated SNAI1 expression by sponging let-7f-1-3p and cis-regulated the adjacent gene MK5. Moreover, MK5-AS1 recruited RBM4 and eIF4A1 to promote the translation of MK5. Our study verified that MK5 promoted the phosphorylation of c-Jun, which activated the transcription of SNAI1 by directly binding to its promoter. Conclusions: MK5-AS1 cis-regulated the nearby gene MK5 and acted as a let-7f-1-3p sponge, playing a vital role in CRC tumorigenesis. This study could provide novel insights into molecular therapeutic targets of CRC.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Jingfeng Gu ◽  
Liang Dong ◽  
Yun Wang ◽  
Wenjia Nie ◽  
Wencong Liu ◽  
...  

Abstract Background Long noncoding RNAs (lncRNAs) are related to colorectal cancer (CRC) development. However, the role and mechanism of lncRNA LINC01224 in CRC development are largely unknown. Methods LINC01224, Yin Yang 1 (YY1), microRNA (miR)-485-5p, and myosins of class VI (MYO6) levels were examined using quantitative reverse transcription polymerase chain reaction and western blotting. Functional analyses were processed through CCK-8, colony formation, flow cytometry, transwell, and xenograft analyses. Dual-luciferase reporter, chromatin immunoprecipitation (ChIP), RNA immunoprecipitation, and pull-down assays were conducted to analyze the binding interaction. Results LINC01224 abundance was elevated in CRC tissue samples and cell lines. Elevated LINC01224 might indicate the lower 5-year overall survival in 52 CRC patients. LINC01224 was upregulated via the transcription factor YY1. LINC01224 knockdown restrained CRC cell proliferation, migration, and invasion and increased apoptosis. MiR-485-5p was sponged by LINC01224, and miR-485-5p downregulation relieved the influence of LINC01224 interference on CRC progression. MYO6 was targeted via miR-485-5p and regulated via LINC01224/miR-485-5p axis. MiR-485-5p overexpression suppressed CRC cell proliferation, migration, and invasion and facilitated apoptosis. MYO6 upregulation mitigated the role of miR-485-5p. LINC01224 knockdown decreased xenograft tumor growth. Conclusion YY1-induced LINC01224 regulates CRC development via modulating miR-485-5p/MYO6 axis.


2021 ◽  
Vol 12 (10) ◽  
Author(s):  
Rui Li ◽  
Yanyu Hao ◽  
Qiuhan Wang ◽  
Yuan Meng ◽  
Kunhe Wu ◽  
...  

AbstractSphingolipid metabolic dysregulation has increasingly been considered to be a drug-resistance mechanism for a variety of tumors. In this study, through an LC–MS assay, LIM and SH3 protein 1 (LASP1) was identified as a sphingolipid-metabolism-involved protein, and short-chain enoyl-CoA hydratase (ECHS1) was identified as a new LASP1-interacting protein through a protein assay in colorectal cancer (CRC). Gain- and loss-of-function analyses demonstrated the stimulatory role played by ECHS1 in CRC cell proliferation, migration, and invasion in vitro and in vivo. Mechanistic studies of the underlying tumor-supportive oncometabolism indicate that ECHS1 enables altering ceramide (Cer) metabolism that increases glycosphingolipid synthesis (HexCer) by promoting UDP-glucose ceramide glycosyltransferase (UGCG). Further analysis showed that ECHS1 promotes CRC progression and drug resistance by releasing reactive oxygen species (ROS) and interfering mitochondrial membrane potential via the PI3K/Akt/mTOR-dependent signaling pathway. Meanwhile, the phenomenon of promoting the survival and drug resistance of CRC cells caused by ECHS1 could be reversed by Eliglustat, a specific inhibitor of UCCG, in vitro and in vivo. IHC assay showed that ECHS1 was overexpressed in CRC tissues, which was related to the differentiation and poor prognosis of CRC patients. This study provides new insight into the mechanism by which phospholipids promote drug resistance in CRC and identifies potential targets for future therapies.


2020 ◽  
Vol 217 (10) ◽  
Author(s):  
Ute Koch ◽  
Freddy Radtke

In this issue of JEM, Varga et al. (https://doi.org/10.1084/jem.20191515) describe a mouse model of invasive and metastatic colorectal cancer (CRC) closely resembling the human consensus molecular subtype (CMS) 4 associated with the poorest overall survival of the four CMSs. Transcriptomic and bioinformatic analysis combined with pharmacological and genetic studies identified Notch3 as a promoter of tumor progression and metastasis. NOTCH3 expression was up-regulated in CMS4 CRC patients and associated with tumor staging, lymph node and distant metastasis. These findings feature NOTCH3 as putative therapeutic target for advanced CMS4 CRC patients.


Sign in / Sign up

Export Citation Format

Share Document