scholarly journals ECHS1, an interacting protein of LASP1, induces sphingolipid-metabolism imbalance to promote colorectal cancer progression by regulating ceramide glycosylation

2021 ◽  
Vol 12 (10) ◽  
Author(s):  
Rui Li ◽  
Yanyu Hao ◽  
Qiuhan Wang ◽  
Yuan Meng ◽  
Kunhe Wu ◽  
...  

AbstractSphingolipid metabolic dysregulation has increasingly been considered to be a drug-resistance mechanism for a variety of tumors. In this study, through an LC–MS assay, LIM and SH3 protein 1 (LASP1) was identified as a sphingolipid-metabolism-involved protein, and short-chain enoyl-CoA hydratase (ECHS1) was identified as a new LASP1-interacting protein through a protein assay in colorectal cancer (CRC). Gain- and loss-of-function analyses demonstrated the stimulatory role played by ECHS1 in CRC cell proliferation, migration, and invasion in vitro and in vivo. Mechanistic studies of the underlying tumor-supportive oncometabolism indicate that ECHS1 enables altering ceramide (Cer) metabolism that increases glycosphingolipid synthesis (HexCer) by promoting UDP-glucose ceramide glycosyltransferase (UGCG). Further analysis showed that ECHS1 promotes CRC progression and drug resistance by releasing reactive oxygen species (ROS) and interfering mitochondrial membrane potential via the PI3K/Akt/mTOR-dependent signaling pathway. Meanwhile, the phenomenon of promoting the survival and drug resistance of CRC cells caused by ECHS1 could be reversed by Eliglustat, a specific inhibitor of UCCG, in vitro and in vivo. IHC assay showed that ECHS1 was overexpressed in CRC tissues, which was related to the differentiation and poor prognosis of CRC patients. This study provides new insight into the mechanism by which phospholipids promote drug resistance in CRC and identifies potential targets for future therapies.

Author(s):  
Jie Zhang ◽  
Xiao-Yan Li ◽  
Ping Hu ◽  
Yuan-Sheng Ding

Previous study indicates that long noncoding RNA NORAD could serve as a competing endogenous RNA to pancreatic cancer metastasis. However, its role in colorectal cancer (CRC) needs to be investigated. In the present study, we found that the expression of NORAD was significantly upregulated in CRC tissues. Furthermore, the expression of NORAD was positively related with CRC metastasis and patients’ poor prognosis. Knockdown of NORAD markedly inhibited CRC cell proliferation, migration, and invasion but induced cell apoptosis in vitro. In vivo experiments also indicated an inhibitory effect of NORAD on tumor growth. Mechanistically, we found that NORAD served as a competing endogenous RNA for miR-202-5p. We found that there was an inverse relationship between the expression of NORAD and miR-202-5p in CRC tissues. Moreover, overexpression of miR-202-5p in SW480 and HCT116 cells significantly inhibited cellular proliferation, migration, and invasion. Taken together, our study demonstrated that the NORAD/miR-202-5p axis plays a pivotal function on CRC progression.


2020 ◽  
Vol 19 (1) ◽  
Author(s):  
Songwen Ju ◽  
Feng Wang ◽  
Yirong Wang ◽  
Songguang Ju

AbstractHypoxic stress plays a pivotal role in cancer progression; however, how hypoxia drives tumors to become more aggressive or metastatic and adaptive to adverse environmental stress is still poorly understood. In this study, we revealed that CSN8 might be a key regulatory switch controlling hypoxia-induced malignant tumor progression. We demonstrated that the expression of CSN8 increased significantly in colorectal cancerous tissues, which was correlated with lymph node metastasis and predicted poor patient survival. CSN8 overexpression induces the epithelial-mesenchymal transition (EMT) process in colorectal cancer cells, increasing migration and invasion. CSN8 overexpression arrested cell proliferation, upregulated key dormancy marker (NR2F1, DEC2, p27) and hypoxia response genes (HIF-1α, GLUT1), and dramatically enhanced survival under hypoxia, serum deprivation, or chemo-drug 5-fluorouracil treatment conditions. In particular, silenced CSN8 blocks the EMT and dormancy processes induced by the hypoxia of 1% O2 in vitro and undermines the adaptive capacity of colorectal cancer cells in vivo. The further study showed that CSN8 regulated EMT and dormancy partly by activating the HIF-1α signaling pathway, which increased HIF-1α mRNA expression by activating NF-κB and stabilized the HIF-1α protein via HIF-1α de-ubiquitination. Taken together, CSN8 endows primary colorectal cancer cells with highly aggressive/metastatic and adaptive capacities through regulating both EMT and dormancy induced by hypoxia. CSN8 could serve as a novel prognostic biomarker for colorectal cancer and would be an ideal target of disseminated dormant cell elimination and tumor metastasis, recurrence, and chemoresistance prevention.


2016 ◽  
Vol 36 (3) ◽  
Author(s):  
Longci Sun ◽  
Hanbing Xue ◽  
Chunhui Jiang ◽  
Hong Zhou ◽  
Lei Gu ◽  
...  

This article aims to find the key long non-coding RNAs (LncRNAs) associated with colorectal cancer (CRC) and to study its biological functions in colorectal cancer progression. Our study has shown that upregulated LncRNA DQ786243 can regulate cell proliferation, cell cycle progression, cell apoptosis, migration, and invasion in CRC cells. Xenograft experiments confirmed that the growth of xenograft tumors formed by CRC cells was suppressed after silencing LncRNA DQ786243 expression. In conclusion, our study suggests that LncRNA DQ786243 is an oncogene that promotes tumor progression and leads us to propose that LncRNAs may serve as key regulatory hubs in CRC progression.


Author(s):  
Xinyang Lu ◽  
Zhiqiang Liu ◽  
Xiaofei Ning ◽  
Lunhua Huang ◽  
Biao Jiang

The long noncoding RNA HOX transcript antisense RNA (HOTAIR) has been found to be overexpressed in many human malignancies and involved in tumor progression and metastasis. Although the downstream target through which HOTAIR modulates tumor metastasis is not well known, evidence suggests that microRNA-197 (miR-197) might be involved in this event. In the present study, the significance of HOTAIR and miR-197 in the progression of colorectal cancer was detected in vitro and in vivo. We found that HOTAIR expression was significantly increased in colorectal cancer cells and tissues. In contrast, the expression of miR-197 was obviously decreased. We further demonstrated that HOTAIR knockdown promoted apoptosis and inhibited cell proliferation, migration, and invasion in vitro and in vivo. Moreover, HOTAIR modulated the progression of colorectal cancer by competitively binding miR-197. Taken together, our study has identified a novel pathway through which HOTAIR exerts its oncogenic role and provided a molecular basis for potential applications of HOTAIR in the prognosis and treatment of colorectal cancer.


2021 ◽  
Vol 11 ◽  
Author(s):  
Tao Guo ◽  
Defeng Liu ◽  
Shihao Peng ◽  
Meng Wang ◽  
Yangyang Li

BackgroundColorectal cancer (CRC) is a common malignant tumor with high metastatic and recurrent rates. This study probes the effect and mechanism of long non-coding RNA MIR31HG on the progression of CRC cells.Materials and MethodsQuantitative real-time PCR (qRT-PCR) was used to analyze the expression of MIR31HG and miR-361-3p in CRC tissues and normal tissues. Gain- or loss-of-function assays were conducted to examine the roles of MIR31HG, miR-361-3p and YY1 transcription factor (YY1) in the CRC progression. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and colony formation experiment were conducted to test CRC cell proliferation. CRC cell invasion was determined by Transwell assay. The glucose detection kit and lactic acid detection kit were utilized to monitor the levels of glucose and lactate in CRC cells. The glycolysis level in CRC cells was examined by the glycolytic stress experiment. Western blot was performed to compare the expression of glycolysis-related proteins (PKM2, GLUT1 and HK2) and angiogenesis-related proteins (including VEGFA, ANGPT1, HIF1A and TIMP1) in HUVECs. The binding relationships between MIR31HG and miR-361-3p, miR-361-3p and YY1 were evaluated by the dual-luciferase reporter assay and RNA immunoprecipitation (RIP).ResultsMIR31HG was up-regulated in CRC tissues and was associated with poorer prognosis of CRC patients. The in-vitro and in-vivo experiments confirmed that overexpressing MIR31HG heightened the proliferation, growth, invasion, glycolysis and lung metastasis of CRC cells as well as the angiogenesis of HUVECs. In addition, MIR3HG overexpression promoted YY1 mRNA and protein level, and forced overexpression of YY1 enhanced MIR31HG level. Overexpressing YY1 reversed the tumor-suppressive effect mediated by MIR31HG knockdown. miR-361-3p, which was inhibited by MIR31HG overexpression, repressed the malignant behaviors of CRC cells. miR-361-3p-mediated anti-tumor effects were mostly reversed by upregulating MIR31HG. Further mechanism studies illustrated that miR-361-3p targeted and negatively regulated the expression of YY1.ConclusionThis study reveals that MIR31HG functions as an oncogenic gene in CRC via forming a positive feedback loop of MIR31HG-miR-361-3p-YY1.


2019 ◽  
Vol 18 (1) ◽  
Author(s):  
Wen Ni ◽  
Su Yao ◽  
Yunxia Zhou ◽  
Yuanyuan Liu ◽  
Piao Huang ◽  
...  

Abstract Background YAP activation is crucial for cancer development including colorectal cancer (CRC). Nevertheless, it remains unclear whether N6-Methyladenosine (m6A) modified transcripts of long noncoding RNAs (lncRNAs) can regulate YAP activation in cancer progression. We investigated the functional link between lncRNAs and the m6A modification in YAP signaling and CRC progression. Methods YAP interacting lncRNAs were screened by RIP-sequencing, RNA FISH and immunofluorescence co-staining assays. Interaction between YAP and lncRNA GAS5 was studied by biochemical methods. MeRIP-sequencing combined with lncRNA-sequencing were used to identify the m6A modified targets of YTHDF3 in CRC. Gain-of-function and Loss-of-function analysis were performed to measure the function of GAS5-YAP-YTHDF3 axis in CRC progression in vitro and in vivo. Results GAS5 directly interacts with WW domain of YAP to facilitate translocation of endogenous YAP from the nucleus to the cytoplasm and promotes phosphorylation and subsequently ubiquitin-mediated degradation of YAP to inhibit CRC progression in vitro and in vivo. Notably, we demonstrate the m6A reader YTHDF3 not only a novel target of YAP but also a key player in YAP signaling by facilitating m6A-modified lncRNA GAS5 degradation, which profile a new insight into CRC progression. Clinically, lncRNA GAS5 expressions is negatively correlated with YAP and YTHDF3 protein levels in tumors from CRC patients. Conclusions Our study uncovers a negative functional loop of lncRNA GAS5-YAP-YTHDF3 axis, and identifies a new mechanism for m6A-induced decay of GAS5 on YAP signaling in progression of CRC which may offer a promising approach for CRC treatment.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yu-Nan Ma ◽  
Yong-Gang Hong ◽  
Guan-Yu Yu ◽  
Si-yuan Jiang ◽  
Bo-lun Zhao ◽  
...  

Abstract Background Recent reports suggest that the long non-coding RNA LBX2 antisense RNA 1 (LBX2-AS1) acts as an important regulator in cancer progression, but its significance in colorectal cancer (CRC) remains undetermined. Methods LBX2-AS1 expression levels in CRC were determined from the GEPIA database and CRC tissues to investigate clinical relevance. meRIP-PCR assays investigated the molecular mechanisms underlying the function of m6A in LBX2-AS1. Loss of function experiments was used to define the role of LBX2-AS1 in the progression of CRC. The ceRNA function of LBX2-AS1 was evaluated by RNA immunoprecipitation. In vitro and PDX models were used to determine if LBX2-AS1 promotes 5-fluorouracil resistance. Results Data from the TCGA and our institutional patient cohorts established that LBX2-AS1 levels were significantly upregulated in most CRC tissues relative to normal adjacent colon tissues. Moreover, LBX2-AS1 levels were positively correlated with aggressive disease characteristics, constituting an independent prognostic indicator of overall patient survival. Mechanistic investigations suggested that the increased LBX2-AS1 in CRC was mediated by METTL3-dependent m6A methylation. In vitro experiments indicated that knockdown of LBX2-AS1 inhibited CRC proliferation, migration and invasion with this phenotype linked to LBX2-AS1-mediated regulation of AKT1, acting as a ceRNA to sponge miR-422a. Ex vivo analysis of patient-derived CRC xenografts showed that low LBX2-AS1 expression cases exhibited 5-FU responsiveness and clinical investigations confirmed that low LBX2-AS1 expression was associated with improved clinical benefits from 5-FU therapy. Conclusions Together these results suggest that LBX2-AS1 may serve as a therapeutic target and predictor of 5-FU benefit in CRC patients.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Yifan Li ◽  
Jing Xun ◽  
Botao Wang ◽  
Yuan Ma ◽  
Lanqiu Zhang ◽  
...  

Abstract Background Colorectal cancer is one of the most common malignancy in the world. It has been reported that cancer stem cells (CSCs) serve as the primary drivers of tumorigenesis and tumor progression. There is an urgent need to explore novel molecules that regulate CSCs or their signatures. Increasing evidence has shown that miRNAs are involved in tumorigenesis and progression. Here, we aim to explore the regulatory effect and mechanism of miR-3065-3p on the stemness of colorectal cancer. Methods The expression of miR-3065-3p in colorectal cancer and the association of miR-3065-3p expression with prognosis of patients with colorectal cancer were analyzed using TCGA dataset or clinical cases. Gain or loss of function in different models, including colorectal cancer cell lines and orthotopic xenograft or liver metastatic mouse model, were used to investigate the effects of miR-3065-3p on colorectal cancer stemness and metastasis in vitro and in vivo. Cancer stemness was analyzed by detecting the ability of migration and invasion, NANOG, OCT4, and SOX2 expression, ALDH activity and sphere formation. In addition, the interaction of miR-3065-3p and cytokine receptor-like factor 1 (CRLF1) was analyzed theoretically and identified by the luciferase reporter assay. Moreover, the correlation between CRLF1 expression and miR-3065-3p was analyzed in colorectal cancer tissues. Finally, the effect of CRLF1 on the stemness and metastasis of colorectal cancer in vitro and in vivo was assessed. Results In this report, we found that miR-3065-3p was overexpressed in colorectal cancer and that its high expression was associated with poor prognosis of patients with colorectal cancer. miR-3065-3p promotes the stemness and metastasis of colorectal cancer. Furthermore, CRLF1 was the downstream target of miR-3065-3p and inhibited the stemness of colorectal cancer. In addition, CRLF1 expression was negatively correlated with miR-3065-3p in colorectal cancer tissues. And, CRLF1 mediated the effects of miR-3065-3p on promoting stemness of colorectal cancer cells. Conclusion Our data suggest that miR-3065-3p promoted the stemness and metastasis of colorectal cancer by targeting CRLF1. miR-3065-3p might serve as a promising prognostic marker as well as a therapeutic target for colorectal cancer.


2020 ◽  
Author(s):  
Lin Hu ◽  
Jing Wang ◽  
Yunliang Wang ◽  
Linpeng Wu ◽  
Chao Wu ◽  
...  

Abstract Background: LOX-like 1 (LOXL1) is a lysyl oxidase, and emerging evidence has revealed its effect on malignant cancer progression. However, its role in colorectal cancer (CRC) and the underlying molecular mechanisms have not yet been elucidated. Methods: LOXL1 expression in colorectal cancer was detected by immunohistochemistry, western blotting and real-time PCR. In vitro , colony formation, wound healing, migration and invasion assays were performed to investigate the effects of LOXL1 on cell proliferation, migration and invasion. In vivo , metastasis models and mouse xenografts were used to assess tumorigenicity and metastasis ability. Molecular biology experiments were utilized to reveal the underlying mechanisms by which LOXL1 modulates the Hippo pathway. Results: LOXL1 was highly expressed in normal colon tissues compared with cancer tissues. In vitro, silencing LOXL1 in CRC cell lines dramatically enhanced migration, invasion, and colony formation, while overexpression of LOXL1 exerted the opposite effects. The results of the in vivo experiments demonstrated that the overexpression of LOXL1 in CRC cell lines drastically inhibited metastatic progression and tumour growth. Mechanistically, LOXL1 inhibited the transcriptional activity of Yes-associated protein (YAP) by interacting with MST1/2 and increasing the phosphorylation of MST1/2. Conclusions: LOXL1 may function as an important tumour suppressor in regulating tumour growth, invasion and metastasis via negative regulation of YAP activity.


2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Lin Hu ◽  
Jing Wang ◽  
Yunliang Wang ◽  
Linpeng Wu ◽  
Chao Wu ◽  
...  

Abstract Background LOX-like 1 (LOXL1) is a lysyl oxidase, and emerging evidence has revealed its effect on malignant cancer progression. However, its role in colorectal cancer (CRC) and the underlying molecular mechanisms have not yet been elucidated. Methods LOXL1 expression in colorectal cancer was detected by immunohistochemistry, western blotting and real-time PCR. In vitro, colony formation, wound healing, migration and invasion assays were performed to investigate the effects of LOXL1 on cell proliferation, migration and invasion. In vivo, metastasis models and mouse xenografts were used to assess tumorigenicity and metastasis ability. Molecular biology experiments were utilized to reveal the underlying mechanisms by which LOXL1 modulates the Hippo pathway. Results LOXL1 was highly expressed in normal colon tissues compared with cancer tissues. In vitro, silencing LOXL1 in CRC cell lines dramatically enhanced migration, invasion, and colony formation, while overexpression of LOXL1 exerted the opposite effects. The results of the in vivo experiments demonstrated that the overexpression of LOXL1 in CRC cell lines drastically inhibited metastatic progression and tumour growth. Mechanistically, LOXL1 inhibited the transcriptional activity of Yes-associated protein (YAP) by interacting with MST1/2 and increasing the phosphorylation of MST1/2. Conclusions LOXL1 may function as an important tumour suppressor in regulating tumour growth, invasion and metastasis via negative regulation of YAP activity. Graphical abstract


Sign in / Sign up

Export Citation Format

Share Document