scholarly journals Volatile Anesthetics Regulate Anti-Cancer Relevant Signaling

2021 ◽  
Vol 11 ◽  
Author(s):  
Jiaqiang Wang ◽  
Chien-shan Cheng ◽  
Yan Lu ◽  
Shen Sun ◽  
Shaoqiang Huang

Volatile anesthetics are widely used inhalation anesthetics in clinical anesthesia. In recent years, the regulation of anti-cancer relevant signaling of volatile anesthetics has drawn the attention of investigators. However, their underlying mechanism remains unclear. This review summarizes the research progress on the regulation of anti-cancer relevant signaling of volatile anesthetics, including sevoflurane, desflurane, xenon, isoflurane, and halothane in vitro, in vivo, and clinical studies. The present review article aims to provide a general overview of regulation of anti-cancer relevant signaling and explore potential underlying molecular mechanisms of volatile anesthetics. It may promote promising insights of guiding clinical anesthesia procedure and instructing enhance recovery after surgery (ERAS) with latent benefits.

2018 ◽  
Vol 18 (2) ◽  
pp. 156-165 ◽  
Author(s):  
Jiaqiang Wang ◽  
Chien-shan Cheng ◽  
Yan Lu ◽  
Xiaowei Ding ◽  
Minmin Zhu ◽  
...  

Background: Propofol, a widely used intravenous anesthetic agent, is traditionally applied for sedation and general anesthesia. Explanation: Recent attention has been drawn to explore the effect and mechanisms of propofol against cancer progression in vitro and in vivo. Specifically, the proliferation-inhibiting and apoptosis-inducing properties of propofol in cancer have been studied. However, the underlying mechanisms remain unclear. Conclusion: This review focused on the findings within the past ten years and aimed to provide a general overview of propofol's malignance-modulating properties and the potential molecular mechanisms.


Molecules ◽  
2019 ◽  
Vol 24 (1) ◽  
pp. 193 ◽  
Author(s):  
Yasuyoshi Miyata ◽  
Yohei Shida ◽  
Tomoaki Hakariya ◽  
Hideki Sakai

Prostate cancer is the most common cancer among men. Green tea consumption is reported to play an important role in the prevention of carcinogenesis in many types of malignancies, including prostate cancer; however, epidemiological studies show conflicting results regarding these anti-cancer effects. In recent years, in addition to prevention, many investigators have shown the efficacy and safety of green tea polyphenols and combination therapies with green tea extracts and anti-cancer agents in in vivo and in vitro studies. Furthermore, numerous studies have revealed the molecular mechanisms of the anti-cancer effects of green tea extracts. We believe that improved understanding of the detailed pathological roles at the molecular level is important to evaluate the prevention and treatment of prostate cancer. Therefore, in this review, we present current knowledge regarding the anti-cancer effects of green tea extracts in the prevention and treatment of prostate cancer, with a particular focus on the molecular mechanisms of action, such as influencing tumor growth, apoptosis, androgen receptor signaling, cell cycle, and various malignant behaviors. Finally, the future direction for the use of green tea extracts as treatment strategies in patients with prostate cancer is introduced.


2020 ◽  
Vol 10 (5) ◽  
pp. 271-283
Author(s):  
Lin Wang ◽  
Junke Song ◽  
Ailin Liu ◽  
Bin Xiao ◽  
Sha Li ◽  
...  

Abstract Flavonoids are now considered as an indispensable component in a variety of nutraceutical and pharmaceutical applications. Most recent researches have focused on the health aspects of flavonoids for humans. Especially, different flavonoids have been investigated for their potential antiviral activities, and several natural flavonoids exhibited significant antiviral properties both in vitro and in vivo. This review provides a survey of the literature regarding the evidence for antiviral bioactivities of natural flavonoids, highlights the cellular and molecular mechanisms of natural flavonoids on viruses, and presents the details of most reported flavonoids. Meanwhile, future perspectives on therapeutic applications of flavonoids against viral infections were discussed.


Author(s):  
Zhifu Gui ◽  
Zhenguo Zhao ◽  
Qi Sun ◽  
Guoyi Shao ◽  
Jianming Huang ◽  
...  

Long non-coding RNAs (lncRNAs) play important roles in human cancers including gastric cancer (GC). Dysregulation of lncRNAs is involved in a variety of pathological activities associated with gastric cancer progression and chemo-resistance. However, the role and molecular mechanisms of FEZF1-AS1 in chemoresistance of GC remain unknown. In this study, we aimed to determine the role of FEZF1-AS1 in chemoresistance of GC. The level of FEZF1-AS1 in GC tissues and GC cell lines was assessed by qRT-PCR. Our results showed that the expression of FEZF1-AS1 was higher in gastric cancer tissues than in adjacent normal tissues. Multivariate analysis identified that high level of FEZF1-AS1 is an independent predictor for poor overall survival. Increased FEZF1-AS1 expression promoted gastric cancer cell proliferation in vitro. Additionally, FEZF1-AS1 was upregulated in chemo-resistant GC tissues. The regulatory effect of FEZF1-AS1 on multi-drug resistance (MDR) in GC cells and the underlying mechanism was investigated. It was found that increased FEZF1-AS1 expression promoted chemo-resistance of GC cells. Molecular interactions were determined by RNA immunoprecipitation (RIP) and the results showed that FEZF1-AS1 regulated chemo-resistance of GC cells through modulating autophagy by directly targeting ATG5. The proliferation and autophagy of GC cells promoted by overexpression of LncFEZF1-AS1 was suppressed when ATG5 was knocked down. Moreover, knockdown of FEZF1-AS1 inhibited tumor growth and increased 5-FU sensitivity in GC cells in vivo. Taken together, this study revealed that the FEZF1-AS1/ATG5 axis regulates MDR of GC cells via modulating autophagy.


Molecules ◽  
2021 ◽  
Vol 26 (16) ◽  
pp. 4941
Author(s):  
Abdelwahab Khalil ◽  
Basem H. Elesawy ◽  
Tarek M. Ali ◽  
Osama M. Ahmed

Insects of the order Hymenoptera have a defensive substance that contains many biologically active compounds. Specifically, venom from honeybees (Apis mellifera) contains many enzymes and peptides that are effective against various diseases. Different research papers stated the possibility of using bee venom (a direct bee sting or in an injectable form) in treating several complications; either in vivo or in vitro. Other reports used the active fractions of bee venom clinically or at labratory scale. Many reports and publications have stated that bee venom and its constituents have multiple biological activities including anti-microbial, anti-protozoan, anti-cancer, anti-inflammatory, and anti-arthritic properties. The present review aims to refer to the use of bee venom itself or its fractions in treating several diseases and counteracting drug toxicities as an alternative protocol of therapy. The updated molecular mechanisms of actions of bee venom and its components are discussed in light of the previous updated publications. The review also summarizes the potential of venom loaded on nanoparticles as a drug delivery vehicle and its molecular mechanisms. Finally, the products of bee venom available in markets are also demonstrated.


2020 ◽  
Vol 20 (1) ◽  
pp. 29-48 ◽  
Author(s):  
Ramesh K. Bonta

Background: Cancer is a rapidly growing disease and the second most leading cause of death worldwide. Breast, colon, lung, and prostate cancer are the most diagnosed types of cancer among the majority of the population. The prevalence of these cancers is increasing rapidly due to the lack of effective drugs. The search for anti-cancer bioactive components from natural plant sources is gaining immense significance. The aim of the paper is to introduce the readers about the in vitro and in vivo biochemical mechanisms of phenolic acids and flavonoids in these four types of cancers. Methods: A literature search was carried out in databases, including Scopus, SciFinder, Springer, Science direct and Google. The main keywords used were fruits & vegetables, phenolic acids, flavonoids, anticancer, bioavailability, etc. The data obtained were integrated and analyzed. Results: The study revealed the potential molecular mechanisms of phenolic acids and flavonoids, which include the induction of apoptosis, inhibition of cell proliferation, cell-cycle arrest, induction of Poly ADP ribose polymerase cleavage, downregulation of Matrix metalloproteinases-2 and Matrix metalloproteinases-9 activities, decreased levels of B-cell lymphoma-2, etc. Promising effects of phenolic acids and flavonoids have been observed against breast, colon, lung and prostate cancers. Conclusion: The in vitro and in vivo anti-cancer mechanisms of phenolic acids and flavonoids have been revealed in this study. With the knowledge of specific molecular targets and the structural-functional relationship of bioactive compounds, the current review will open a new gateway for the scientific community and provide them a viable option to exploit more of these compounds for the development of novel and efficacious anticancer compounds.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Devanesan Arul Ananth ◽  
Garlapati Deviram ◽  
Vijayaraghavan Mahalakshmi ◽  
V. Ratna Bharathi

Abstract Background Medicinal plants play a significant role in the progress of persuasive therapeutic agents. Earlier to the innovation of synthetic drugs, human beings completely relied on the plants for the treatment of various ailments. Natural product extracts, particularly those derived from different plant species, provided the main source of Siddha, Ayurveda and Folk medicines. P. daemia is a perennial climber, traditionally reported for the treatment in a variety of diseases. In present review, we focused on the present status of phytochemical and pharmacological activities P. daemia. Methodology With the support of electronic databases such as Science Direct, Google Scholar, Mendeley, Scirus and PubMed central. Traditional knowledge information collected by Indian taxonomical books, survey from local rural and tribal peoples. Pharmacological data’s obtained from scientific journals published from 2000 to 2020. Results P. daemia extract, contains several phytochemicals, especially rich in flavonoids. These secondary metabolites synthesized from P. daemia have been reported for the treatment of various chronic diseases. In recent years, P. daemia phytoconstituents set as a key role in natural drug development as it harbours many in vitro and in vivo pharmacological activities such as anti-inflammatory, anti-cancer, anti-fertility, anti-arthritic and antimicrobial etc., Conclusion P. daemia was the less studied plant compared to other medicinal plants. In this context more emphasis has to be laid on studies that discuss on the secondary metabolite activities and molecular mechanisms that work against various chronic diseases.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Ye Xiong ◽  
Jianrong Huang

AbstractArtemisinin and its derivatives belong to a family of drugs approved for the treatment of malaria with known clinical safety and efficacy. In addition to its anti-malarial effect, artemisinin displays anti-viral, anti-inflammatory, and anti-cancer effects in vivo and in vitro. Recently, much attention has been paid to the therapeutic role of artemisinin in liver diseases. Several studies suggest that artemisinin and its derivatives can protect the liver through different mechanisms, such as those pertaining to inflammation, proliferation, invasion, metastasis, and induction of apoptosis and autophagy. In this review, we provide a comprehensive discussion of the underlying molecular mechanisms and signaling pathways of artemisinin and its derivatives in treating liver diseases. Further pharmacological research will aid in determining whether artemisinin and its derivatives may serve as promising medicines for the treatment of liver diseases in the future.


2020 ◽  
Author(s):  
Bing Wei ◽  
Shangli Yao ◽  
Ming Gao ◽  
Zujun Wang ◽  
Wenyan Wang ◽  
...  

Abstract Resveratrol (RES), a natural compound found in red wine, has previously reported to suppress ovarian cancer (OC) cell growth in vitro and in vivo; however, its potential molecular mechanisms are not fully elucidated. The aim of this study is to investigate the suppressive potential of RES in OC cell growth and invasion and reveal the underlying mechanisms. Herein, we found that RES treatment obviously suppressed the proliferative and invasive capacities of OC cells, and elevated cell apoptosis in vitro. Subsequent microarray and qRT-PCR analysis further showed that microRNA-34a (miR-34a) was significantly increased by RES treatment. Moreover, the inhibitory effects of RES on OC cells were enhanced by miR-34a overexpression, whereas weakened by miR-34a inhibition in OC cells. Of note, Bcl-2, an anti-apoptotic gene, was identified as a direct target of miR-34a. Then, we revealed that RES decreased the expression of Bcl-2 in OC cells in a dose dependent manner. Furthermore, the anti-tumor effects of RES were abolished by overexpression of Bcl-2 in OC cells. Overall, these results demonstrated that RES exerts the anti-cancer effects on OC cells through the miR-34a/Bcl-2 axis.


2018 ◽  
Vol 50 (5) ◽  
pp. 1815-1831 ◽  
Author(s):  
Xianling Zeng ◽  
Yafei Zhang ◽  
Huiqiu Xu ◽  
Taohong Zhang ◽  
Yan Xue ◽  
...  

Background/Aims: Choriocarcinoma (CC) is a highly aggressive gestational trophoblastic neoplasia; however, the underlying molecular mechanisms of its invasiveness and metastasis remain poorly understood. Human secreted frizzled-related protein 2 (SFRP2) could function as a tumor promoter or suppressor in different tumors, yet the role it plays in CC’s invasion and metastasis is thoroughly unclear. The current study was aimed to explore the function and underlying mechanism of SFRP2 in CC. Methods: The expression of SFRP2 in CC tissues was examined via immunohistochemistry. The methylation level and expression of SFRP2 in CC cell lines, JEG-3 and JAR were examined via bisulfite sequencing PCR (BSP), western blotting and quantitative RT-PCR. The biological role of increasing expressed SFRP2 through its promoter demethylation with 5-Aza-2’-deoxycytidine (5-Aza) was examined by a series of in vitro functional studies. Furthermore, lentivirus transfection technology was adopted to investigate the biological roles of SFRP2 knockdown in JEG-3 and JAR cells in vitro and in vivo. Moreover, its downstream signaling pathway was investigated. Results: SFRP2 was downregulated in CC tissues, and its expression was inversely related to its promoter hypermethylation frequency in JEG-3 and JAR cells. Increased SFRP2 through its promoter demethylation inhibited cell migration, invasion and colony formation in JEG-3 and JAR cells, whereas decreased SFRP2 reversed the epithelial-mesenchymal transition (EMT) process and stemness in JEG-3 and JAR cells both in vitro and vivo. Mechanistically, SFRP2 regulated the EMT and stemness of CC cell lines via canonical Wnt/β-catenin signaling, validated by the usage of a Wnt activator and inhibitor. Conclusion: The current study indicates that downregulated SFRP2 has potent tumor-promotive effects in CC through the modulation of cancer stemness and the EMT phenotype via activation of Wnt/β-catenin signaling in vitro and in vivo.


Sign in / Sign up

Export Citation Format

Share Document