scholarly journals In Vivo Efficacy and Toxicity of Curcumin Nanoparticles in Breast Cancer Treatment: A Systematic Review

2021 ◽  
Vol 11 ◽  
Author(s):  
Alicia S. Ombredane ◽  
Vitória R. P. Silva ◽  
Laise R. Andrade ◽  
Willie O. Pinheiro ◽  
Mayara Simonelly ◽  
...  

Breast cancer is one of the most prevalent types of malignant tumors in the world, resulting in a high incidence of death. The development of new molecules and technologies aiming to apply more effective and safer therapy strategies has been intensively explored to overcome this situation. The association of nanoparticles with known antitumor compounds (including plant-derived molecules such as curcumin) has been considered an effective approach to enhance tumor growth suppression and reduce adverse effects. Therefore, the objective of this systematic review was to summarize published data regarding evaluations about efficacy and toxicity of curcumin nanoparticles (Cur-NPs) in in vivo models of breast cancer. The search was carried out in the databases: CINAHL, Cochrane, LILACS, Embase, FSTA, MEDLINE, ProQuest, BSV regional portal, PubMed, ScienceDirect, Scopus, and Web of Science. Studies that evaluated tumor growth in in vivo models of breast cancer and showed outcomes related to Cur-NP treatment (without association with other antitumor molecules) were included. Of the 528 initially gathered studies, 26 met the inclusion criteria. These studies showed that a wide variety of NP platforms have been used to deliver curcumin (e.g., micelles, polymeric, lipid-based, metallic). Attachment of poly(ethylene glycol) chains (PEG) and active targeting moieties were also evaluated. Cur-NPs significantly reduced tumor volume/weight, inhibited cancer cell proliferation, and increased tumor apoptosis and necrosis. Decreases in cancer stem cell population and angiogenesis were also reported. All the studies that evaluated toxicity considered Cur-NP treatment to be safe regarding hematological/biochemical markers, damage to major organs, and/or weight loss. These effects were observed in different in vivo models of breast cancer (e.g., estrogen receptor-positive, triple-negative, chemically induced) showing better outcomes when compared to treatments with free curcumin or negative controls. This systematic review supports the proposal that Cur-NP is an effective and safe therapeutic approach in in vivo models of breast cancer, reinforcing the currently available evidence that it should be further analyzed in clinical trials for breast cancer treatments.

2020 ◽  
Author(s):  
Xin Tian ◽  
Lina Wu ◽  
Min Jiang ◽  
Zhenyong Zhang ◽  
Rong Wu ◽  
...  

Abstract Background The Glycine N-acyltransferase (GLYAT) gene encodes a protein that catalyzes the transfer of acyl groups from acyl CoA to glycine, resulting in acyl glycine and coenzyme A. Aberrant GLYAT expression is associated with several malignant tumors, but its clinical importance in malignant tumors, especially human breast cancer (BC), has yet to be fully addressed. This study aims to evaluate the clinical function of GLYAT in BC patients. Methods GLYAT expression was determined by immune blot and immunohistochemistry in three BC cell lines and primary cancer tissues. The MDA-MB 231 cell line was used for GLYAT gene knockdown experiments while the MCF7 cell line for overexpression experiments. Colony formation experiments, soft agar experiments, and transwell assays were utilized for further inspection of cell migration and proliferation capabilities. Immunofluorescence and western blot were used to detect markers of the epithelial-mesenchymal transition (EMT) and changes in the PI3K/AKT/Snail pathway. The role of GLYAT in tumor growth and metastasis was also assessed in nude mice in vivo. Also, a correlation analysis was performed between clinicopathological features and GLYAT expression in BC patients. Results GLYAT was decreased in human BC tissues and cell lines. Functional analysis showed that knockdown of GLYAT augmented BC cell proliferation in vitro and in vivo. However, this phenomenon was reversed when GLYAT was overexpressed in the transfected cells. Moreover, GLYAT inhibited the migratory properties of BC cells, likely through the activation of PI3K/ATK/Snail signaling, which subsequently induced the EMT. IHC analysis indicated that GLYAT was decreased in human BC tissues and lower GLYAT expression was correlated with histological grade, tumor TNM stage, Ki-67 status, and poorer survival in BC patients. Furthermore, lower GLYAT expression seemed as an independent risk factor related to poor prognosis in BC patients based on Cox regression analyses. Conclusions Our findings demonstrate that downregulation of GLYAT expression in human breast cancer is correlated with EMT via the PI3K/ATK/Snail pathway and is also associated with histological grade, tumor TNM stage, Ki-67 status, and poor survival in breast cancer patients.


2019 ◽  
Vol 2 (4) ◽  
pp. 83-98 ◽  
Author(s):  
André De Lima Mota ◽  
Bruna Vitorasso Jardim-Perassi ◽  
Tialfi Bergamin De Castro ◽  
Jucimara Colombo ◽  
Nathália Martins Sonehara ◽  
...  

Breast cancer is the most common cancer among women and has a high mortality rate. Adverse conditions in the tumor microenvironment, such as hypoxia and acidosis, may exert selective pressure on the tumor, selecting subpopulations of tumor cells with advantages for survival in this environment. In this context, therapeutic agents that can modify these conditions, and consequently the intratumoral heterogeneity need to be explored. Melatonin, in addition to its physiological effects, exhibits important anti-tumor actions which may associate with modification of hypoxia and Warburg effect. In this study, we have evaluated the action of melatonin on tumor growth and tumor metabolism by different markers of hypoxia and glucose metabolism (HIF-1α, glucose transporters GLUT1 and GLUT3 and carbonic anhydrases CA-IX and CA-XII) in triple negative breast cancer model. In an in vitro study, gene and protein expressions of these markers were evaluated by quantitative real-time PCR and immunocytochemistry, respectively. The effects of melatonin were also tested in a MDA-MB-231 xenograft animal model. Results showed that melatonin treatment reduced the viability of MDA-MB-231 cells and tumor growth in Balb/c nude mice (p <0.05). The treatment significantly decreased HIF-1α gene and protein expression concomitantly with the expression of GLUT1, GLUT3, CA-IX and CA-XII (p <0.05). These results strongly suggest that melatonin down-regulates HIF-1α expression and regulates glucose metabolism in breast tumor cells, therefore, controlling hypoxia and tumor progression. 


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sofia M. Saraiva ◽  
Carlha Gutiérrez-Lovera ◽  
Jeannette Martínez-Val ◽  
Sainza Lores ◽  
Belén L. Bouzo ◽  
...  

AbstractTriple negative breast cancer (TNBC) is known for being very aggressive, heterogeneous and highly metastatic. The standard of care treatment is still chemotherapy, with adjacent toxicity and low efficacy, highlighting the need for alternative and more effective therapeutic strategies. Edelfosine, an alkyl-lysophospholipid, has proved to be a promising therapy for several cancer types, upon delivery in lipid nanoparticles. Therefore, the objective of this work was to explore the potential of edelfosine for the treatment of TNBC. Edelfosine nanoemulsions (ET-NEs) composed by edelfosine, Miglyol 812 and phosphatidylcholine as excipients, due to their good safety profile, presented an average size of about 120 nm and a neutral zeta potential, and were stable in biorelevant media. The ability of ET-NEs to interrupt tumor growth in TNBC was demonstrated both in vitro, using a highly aggressive and invasive TNBC cell line, and in vivo, using zebrafish embryos. Importantly, ET-NEs were able to penetrate through the skin barrier of MDA-MB 231 xenografted zebrafish embryos, into the yolk sac, leading to an effective decrease of highly aggressive and invasive tumoral cells’ proliferation. Altogether the results demonstrate the potential of ET-NEs for the development of new therapeutic approaches for TNBC.


Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2204
Author(s):  
Meng-Die Yang ◽  
Yang Sun ◽  
Wen-Jun Zhou ◽  
Xiao-Zheng Xie ◽  
Qian-Mei Zhou ◽  
...  

Triple-negative breast cancer (TNBC) is a refractory type of breast cancer that does not yet have clinically effective drugs. The aim of this study is to investigate the synergistic effects and mechanisms of resveratrol combined with cisplatin on human breast cancer MDA-MB-231 (MDA231) cell viability, migration, and invasion in vivo and in vitro. In vitro, MTS assays showed that resveratrol combined with cisplatin inhibits cell viability as a concentration-dependent manner, and produced synergistic effects (CI < 1). Transwell assay showed that the combined treatment inhibits TGF-β1-induced cell migration and invasion. Immunofluorescence assays confirmed that resveratrol upregulated E-cadherin expression and downregulated vimentin expression. Western blot assay demonstrated that resveratrol combined with cisplatin significantly reduced the expression of fibronectin, vimentin, P-AKT, P-PI3K, P-JNK, P-ERK, Sma2, and Smad3 induced by TGF-β1 (p < 0.05), and increased the expression of E-cadherin (p < 0.05), respectively. In vivo, resveratrol enhanced tumor growth inhibition and reduced body weight loss and kidney function impairment by cisplatin in MDA231 xenografts, and significantly reduced the expressions of P-AKT, P-PI3K, Smad2, Smad3, P-JNK, P-ERK, and NF-κB in tumor tissues (p < 0.05). These results indicated that resveratrol combined with cisplatin inhibits the viability of breast cancer MDA231 cells synergistically, and inhibits MDA231 cells invasion and migration through Epithelial-mesenchymal transition (EMT) approach, and resveratrol enhanced anti-tumor effect and reduced side of cisplatin in MDA231 xenografts. The mechanism may be involved in the regulations of PI3K/AKT, JNK, ERK and NF-κB expressions.


2018 ◽  
Author(s):  
Deli Hong ◽  
Andrew J. Fritz ◽  
Kristiaan H. Finstad ◽  
Mark P. Fitzgerald ◽  
Adam L. Viens ◽  
...  

SummaryRecent studies have revealed that mutations in the transcription factor Runx1 are prevalent in breast tumors. Yet, how loss of Runx1 contributes to breast cancer (BCa) remains unresolved. We demonstrate for the first time that Runx1 represses the breast cancer stem cell (BCSC) phenotype and consequently, functions as a tumor suppressor in breast cancer. Runx1 ectopic expression in MCF10AT1 and MCF10CA1a BCa cells reduces (60%) migration, invasion and in vivo tumor growth in mouse mammary fat pad (P<0.05). Runx1 is decreased in BCSCs, and overexpression of Runx1 suppresses tumorsphere formation and reduces the BCSC population. Furthermore, Runx1 inhibits Zeb1 expression, while Runx1 depletion activates Zeb1 and the epithelial-mesenchymal transition. Mechanistically Runx1 functions as a tumor suppressor in breast cancer through repression of cancer stem cell activity. This key regulation of BCSCs by Runx1 may be shared in other epithelial carcinomas, highlighting the importance of Runx1 in solid tumors.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Yu Ran Lee ◽  
Myoung Soo Park ◽  
Hee Kyoung Joo ◽  
Ki Mo Kim ◽  
Jeryong Kim ◽  
...  

2020 ◽  
Vol 22 (10) ◽  
pp. 1439-1451
Author(s):  
Wen-Bin Yang ◽  
Che-Chia Hsu ◽  
Tsung-I Hsu ◽  
Jing-Ping Liou ◽  
Kwang-Yu Chang ◽  
...  

Abstract Background Glioblastoma is associated with poor prognosis and high mortality. Although the use of first-line temozolomide can reduce tumor growth, therapy-induced stress drives stem cells out of quiescence, leading to chemoresistance and glioblastoma recurrence. The specificity protein 1 (Sp1) transcription factor is known to protect glioblastoma cells against temozolomide; however, how tumor cells hijack this factor to gain resistance to therapy is not known. Methods Sp1 acetylation in temozolomide-resistant cells and stemlike tumorspheres was analyzed by immunoprecipitation and immunoblotting experiments. Effects of the histone deacetylase (HDAC)/Sp1 axis on malignant growth were examined using cell proliferation–related assays and in vivo experiments. Furthermore, integrative analysis of gene expression with chromatin immunoprecipitation sequencing and the recurrent glioblastoma omics data were also used to further determine the target genes of the HDAC/Sp1 axis. Results We identified Sp1 as a novel substrate of HDAC6, and observed that the HDAC1/2/6/Sp1 pathway promotes self-renewal of malignancy by upregulating B cell-specific Mo-MLV integration site 1 (BMI1) and human telomerase reverse transcriptase (hTERT), as well as by regulating G2/M progression and DNA repair via alteration of the transcription of various genes. Importantly, HDAC1/2/6/Sp1 activation is associated with poor clinical outcome in both glioblastoma and low-grade gliomas. However, treatment with azaindolyl sulfonamide, a potent HDAC6 inhibitor with partial efficacy against HDAC1/2, induced G2/M arrest and senescence in both temozolomide-resistant cells and stemlike tumorspheres. Conclusion Our study uncovers a previously unknown regulatory mechanism in which the HDAC6/Sp1 axis induces cell division and maintains the stem cell population to fuel tumor growth and therapeutic resistance.


Endocrinology ◽  
2005 ◽  
Vol 146 (7) ◽  
pp. 2885-2894 ◽  
Author(s):  
S. A. Rabbani ◽  
P. Khalili ◽  
A. Arakelian ◽  
H. Pizzi ◽  
G. Chen ◽  
...  

Abstract We evaluated the capacity of estradiol (E2) to regulate PTHrP production, cell growth, tumor growth, and metastasis to the skeleton in breast cancer. In estrogen receptor (ER)-negative human breast cancer cells, MDA-MB-231, and cells transfected with full-length cDNA encoding ER (S-30), E2 caused a marked decrease in cell growth and PTHrP production, effects that were abrogated by anti-E2 tamoxifen. E2 also inhibited PTHrP promoter activity in S-30 cells. For in vivo studies, MDA-MB-231 and S-30 cells were inoculated into the mammary fat pad of female BALB/c nu.nu mice. Animals receiving S-30 cells developed tumors of significantly smaller volume compared with MDA-MB-231 tumor-bearing animals. This change in tumor volume was reversed when S-30 cells were inoculated into ovariectomized (OVX) hosts. Inoculation of MDA-MB-231 cells into the left ventricle resulted in the development of lesions in femora and tibia as determined by x-ray analysis. In contrast, these lesions were significantly smaller in volume and number in animals inoculated with S-30, and this lower incidence was reversed in OVX animals. Bone histological analysis showed that the tumor volume to tissue volume ratio was comparable with that seen by x-ray. Immunohistochemical analysis showed that PTHrP production was inhibited in S-30 group and restored to levels comparable to that seen in MDA-MB-231 tumor-bearing animals when S-30 cells were inoculated in OVX animals. Collectively these studies show that E2 production is inversely correlated with PTHrP production and that the growth-promoting effect of PTHrP has a direct impact on tumor growth at both nonskeletal and skeletal sites.


Cancers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2895
Author(s):  
Kyoung-Jin Lee ◽  
Yuri Kim ◽  
Min Seo Kim ◽  
Hyun-Mi Ju ◽  
Boyoung Choi ◽  
...  

The epidermal growth factor receptor (EGFR), a member of ErbB receptor tyrosine kinase (RTK) family, is activated through growth factor-induced reorganization of the actin cytoskeleton and subsequent dimerization. We herein explored the molecular mechanism underlying the suppression of ligand-induced EGFR dimerization by CD99 agonists and its relevance to tumor growth in vivo. Epidermal growth factor (EGF) activated the formation of c-Src/focal adhesion kinase (FAK)-mediated intracellular complex and subsequently induced RhoA-and Rac1-mediated actin remodeling, resulting in EGFR dimerization and endocytosis. In contrast, CD99 agonist facilitated FAK dephosphorylation through the HRAS/ERK/PTPN12 signaling pathway, leading to inhibition of actin cytoskeletal reorganization via inactivation of the RhoA and Rac1 signaling pathways. Moreover, CD99 agonist significantly suppressed tumor growth in a BALB/c mouse model injected with MDA-MB-231 human breast cancer cells. Taken together, these results indicate that CD99-derived agonist ligand inhibits epidermal growth factor (EGF)-induced EGFR dimerization through impairment of cytoskeletal reorganization by PTPN12-dependent c-Src/FAK inactivation, thereby suppressing breast cancer growth.


2020 ◽  
Vol 29 (2) ◽  
pp. 277-290
Author(s):  
Xuan Liu ◽  
Weirong Yao ◽  
Haiwei Xiong ◽  
Qiang Li ◽  
Yingliang Li

BACKGROUND: Breast cancer is the most common malignant tumor and usually occurs in women. Studies have shown that lncRNA nuclear enriched abundant transcript 1 (NEAT1) contributes to breast cancer progression. This study intends to further investigate the molecular mechanism of NEAT1 in breast cancer. METHODS: The expression levels of NEAT1, miR-410-3p and Cyclin D1 (CCND1) were detected by quantitative real-time PCR (qRT-PCR) in breast cancer tissues and cells. Kaplan-Meier analysis and the log-rank test were performed to determine the relationship between NEAT1 and overall survival. Cell Counting Kit-8 (CCK-8) assay analyzed cell proliferation. Transwell assay was performed to examine cell migration and invasion. The protein levels of CCND1 and epithelial-mesenchymal transition (EMT)-related proteins (E-cadherin, N-cadherin and Vimentin) were measured by western blot. The target relationship was predicted by bioinformatics analysis, and confirmed by luciferase reporter assay and RNA Immunoprecipitation (RIP) assay. Xenograft analysis was used to evaluate the tumor growth in vivo. RESULTS: NEAT1 and CCND1 were upregulated, while miR-410-3p was down-regulated in breast cancer tissues and cells. Higher NEAT1 expression level was associated with lower survival rate of breast cancer patients. Knockdown of miR-410-3p restored silenced NEAT1-mediated the inhibition of on proliferation, migration, invasion and EMT of breast cancer cells. In addition, NEAT1 regulated CCND1 expression by sponging miR-410-3p in breast cancer cells. NEAT1 knockdown blocked the tumor growth in vivo. CONCLUSION: NEAT1 induced breast cancer progression by regulating the miR-410-3p/CCND1 axis, indicating that NEAT1 may be a potential therapeutic target in breast cancer.


Sign in / Sign up

Export Citation Format

Share Document