scholarly journals Case Report: Concurrent Occurrence of Abdominal Double Expressor Lymphoma and Jejunum Follicular Lymphoma

2021 ◽  
Vol 11 ◽  
Author(s):  
Ryutaro Takada ◽  
Tomohiro Watanabe ◽  
Ikue Sekai ◽  
Keisuke Yoshikawa ◽  
Akane Hara ◽  
...  

Double expressor lymphoma (DEL), defined as overexpression of BCL2 and MYC, is an aggressive subtype of diffuse large B cell lymphoma (DLBCL). Here we report a case of a 64-year-old female diagnosed with abdominal DEL transformed from jejunum follicular lymphoma (FL). 18F-fluorodeoxyglucose (FDG)-positron emission tomography showed diffuse accumulation of FDG into the peritoneum and small bowel wall. Double balloon-assisted enteroscopy revealed whitish submucosal tumors in the proximal jejunum. Aggregation of atypical lymphocytes positive for CD20, CD79a, and BCL2 was seen in the jejunal biopsy samples. These atypical lymphocytes were monoclonal since cell surface expression of Ig light chains was limited to κ chain by flow-cytometry. Thus, immunohistochemical and flowcytometric analyses data were consistent with FL of the jejunum. Neoplastic lymphocytes obtained from ascites were positive for CD10, CD20, CD79a, BCL2, and BCL6. Fluorescence in situ hybridization (FISH) showed formation of BCL2/IgH fusion gene and extra copies of MYC, the former of which is a characteristic chromosomal abnormality of FL. These genetic alterations and protein expression profiles of ascitic fluid cells were consistent with those of DEL transformed from FL. Given that a significant population of patients with indolent FL of the gastrointestinal tract developed into aggressive DLBCL, it is likely that primary FL of the jejunum transformed into the abdominal aggressive DEL in this case. This case is unique in that concurrent occurrence of FL and DEL was confirmed by immunohistochemical and FISH analyses and that abdominal DEL transformed from jejunal FL was highly suspected.

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 1692-1692 ◽  
Author(s):  
Marco Fangazio ◽  
David Dominguez-Sola ◽  
Fabrizio Tabbò ◽  
Davide Rossi ◽  
Julie Teruya-Feldstein ◽  
...  

Abstract Diffuse large B cell lymphoma (DLBCL) is the most common form of B cell non-Hodgkin lymphoma (B-NHL), accounting for ~25-40% of all lymphoid tumors. DLBCL comprises genetically, phenotypically and clinically distinct subtypes, including the prognostically favorable germinal center B cell like (GCB)-DLBCL and the more aggressive activated B cell like (ABC)-DLBCL. We have shown that >60% of DLBCL, independent of molecular subtype, lack cell surface expression of HLA-class I (HLA-I), suggesting that these tumors may escape immune recognition by cytotoxic T cells (CTL) (Challa-Malladi, Lieu et al., Cancer Cell, 2011). HLA-I loss also represents a common lesion acquired at transformation of follicular lymphoma (FL) to DLBCL (Pasqualucci et al., Cell Reports 2014). We have investigated the expression of HLA-I across the clinico-pathological spectrum of mature B cell tumors, and found that HLA-I loss is significantly less common in other mature B-NHL, including Burkitt lymphoma (13/43, 30.2%; p=.002), FL (12/60, 20.0%; p<.001), mantle cell lymphoma (1/38, 2.6%; p<.001), marginal zone lymphoma (0/39, 0%; p<.001), and chronic lymphocytic leukemia (1/36, 2.8%; p<.001). These results suggest that HLA-I loss and, thus, escape from recognition from CTL is an important pathogenetic feature of DLBCL. One mechanism of HLA-I loss, identified by exome-sequencing and copy number analysis, is represented by genomic deletions and/or mutational inactivation of the B2M gene, which are found in ~50% of HLA-I negative cases (29% of all DLBCL). These lesions lead to the complete loss of B2-microglobulin, a required component for the assembly and cell surface expression of the HLA-I complex (Pasqualucci et al. Nat Genet, 2011; Challa-Malladi, Lieu et al. Cancer Cell, 2011). However, the remaining ~50% of patients lack surface HLA-I despite the absence of B2M genetic lesions, suggesting the existence of additional underlying mechanisms. In particular, a fraction of patients express an intact B2M protein, which is mislocalized to the cytoplasm. To investigate whether direct genetic disruption of the HLA-I genes could be responsible for the lack of surface HLA-I in these cases, we performed Sanger sequencing and SNP6.0 array analysis of the HLA-I heavy chain genes (HLA-A and HLA-B) in two DLBCL cell lines (Ly10 and RCK8) with wild-type B2M alleles, but cytoplasmic B2M protein. In both lines, we found the presence of biallelic mutations or deletions in the HLA-I loci. Accordingly, transduction with a retrovirus expressing either HLA-I gene was sufficient to restore cell surface B2M and HLA-I in both lines, documenting that DLBCL can exploit genetic disruption of HLA-I as an alternative mechanism to impair the assembly of a membrane HLA-I complex. The overall contribution of this mechanism to HLA-I loss is currently being determined by using a custom capture/next generation sequencing approach of the HLA-I loci in a large panel of paired tumor/normal biopsies with negative or mislocalized B2M/HLA-I. We also examined the role of B2M (HLA-I) loss in lymphomagenesis in vivo. Particularly, since constitutional B2m deletion is not tumorigenic per se (Koller et al., Science 1990), and B2M loss is frequently acquired during FL transformation to DLBCL, we investigated whether the absence of major histocompatibility complex on the cell surface of mature B cells accelerates tumorigenesis in the presence of other oncogenic lesions. To this end, we generated a conditional knock-out mouse model in which the B2m gene is specifically deleted in germinal center B cells upon expression of a Cγ1-Cre allele, and crossed them with IµHABCL6 knock-in mice, which develop DLBCL due to deregulated expression of the BCL6 oncogene (Cattoretti, Pasqualucci et al., Cancer Cell 2006). Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2049-2049
Author(s):  
Karen E Deffenbacher ◽  
George Wright ◽  
Javeed Iqbal ◽  
Huimin Geng ◽  
Derville O’Shea ◽  
...  

Abstract Background: Follicular lymphoma (FL) is the most common indolent B-cell lymphoma and remains incurable by current therapeutic approaches. Clinical course is variable, and transformation into an aggressive lymphoma (t-FL) with marked worsening of prognosis occurs in 20–60% of patients. While Bcl2 gene translocation is a critical initiating event in the majority of FL cases, evidence indicates it is not sufficient for the development of a FL. Characterization of the genetic alterations subsequent to Bcl2 translocation will lend insight into the oncogenic pathways that contribute to FL pathogenesis and the molecular mechanisms underlying variability in clinical course. Methods: To define recurrent genomic copy number alterations (CNA) in FL, we performed high resolution array comparative genomic hybridization (aCGH) using the Affymetrix 500K SNP array platform. aCGH data were generated on a series of 112 FL cases with available gene expression profiling (GEP) and clinical information. Gene expression data were correlated with copy number data using the Gene Expression and Dosage Integrator (GEDI) algorithm developed at the NCI. Results: Selecting for abnormalities occurring in &gt;10% of cases, the minimal common region (MCR) for 38 losses and 31 gains were defined. Novel common regions included gains on 15q11, 16p11, 5p14 and 19q13, and losses on 3q29, and 16p13. The MCR identified by aCGH were also compared with our existing cytogenetic data on 360 FL cases. MCR residing within the most frequent cytogenetic imbalances (&gt;5%) were selected for analysis at the gene level to further refine these regions. These include gains on 1q21, 2p16, 7q11, 8q24, 12q13, 17q21, 18q21, 21q11, and X, and losses on 1p36, 6q, 10q, 13q34, and 17p13. Recurrent amplifications were detected for the 2p16, 15q11, and 17q21 MCR, while frequent uniparental disomy (UPD) was found to overlap the region of loss on 1p36. Recurrent UPD was also noted on 6p, 12q, 15q and 16p. For the majority of selected MCR, global expression of the genes residing in the MCR demonstrated an association with copy number status. Within these abnormalities, individual genes showing significant correlation with copy number were also identified. Conclusion: The combination of high resolution aCGH and GEP facilitated the identification of functionally relevant genes within the chromosomal abnormalities in FL. Delineation of these molecular targets will provide insight into the oncogenic pathways that contribute to FL disease pathogenesis and may provide novel therapeutic targets.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1284-1284
Author(s):  
Carol Y Ying ◽  
David Dominguez-Sola ◽  
Melissa Fabi ◽  
Ivo C Lorenz ◽  
Mukesh Bansal ◽  
...  

Abstract Abstract 1284 Diffuse large B-cell lymphoma (DLBCL) and Follicular Lymphoma (FL) are the most common forms of non-Hodgkin's lymphoma in the adult, accounting for approximately 75% of lymphoma diagnoses. Recent technological advances, including whole-genome DNA and RNA sequencing and gene copy-number analysis, have provided a comprehensive view of the genomic landscape of DLBCL, allowing new insights in the somatic genetic lesions that are associated with the pathogenesis of this malignancy. Among the genetic alterations that are recurrently found in DLBCL and FL, but remain of unclear functional significance, are the mutations involving the MEF2B gene. MEF2B is a member of the myocyte enhancer-binding factor 2 (MEF2) family of transcription factors whose activity is dependent on association with specific co-repressors (including CABIN1 and HDACs) and co-activators in response to multiple signaling pathways. Overall, ∼11% of DLBCL and ∼12% of FL cases reported carry mutations in MEF2B (Morin Nature 2011; Pasqualucci Nat Genet 2011; Lohr PNAS 2012). We showed that within the mature B-cell lineage, MEF2B expression is restricted to germinal center (GC) B-cells. The analysis of the B-cell interactome, a network of protein-protein and protein-DNA interactions generated by reverse-engineering a large dataset of B-cell phenotypes, showed that MEF2B was uniquely connected to BCL6, a proto-oncogene and well-characterized master regulator of the GC reaction. We demonstrated that MEF2B directly binds to the promoter of BCL6 and leads to its trans-activation in GC B-cells. Consistently, silencing of MEF2B in GC-derived lymphoma cell lines led to BCL6 down-regulation and impairment of cell cycle progression and proliferation, suggesting that normal and malignant GC cells are dependent on MEF2B expression. Approximately 80% of the DLBCL and FL mutated cases carry missense mutations clustered in the N-terminal conserved MADS-box and MEF2 functional domains, suggesting that they may have a relevant impact on MEF2B function. In a second group of cases (∼20%), mutations affect the C-terminal half of the MEF2B protein, and are mostly represented by frameshift and nonsense mutations, which truncate or modify the C-terminus of the protein. In order to functionally characterize these mutations, we first investigated whether DLBCL- and FL-associated MEF2B mutations affected the ability to regulate the transcription of BCL6. Using a reporter construct containing the native BCL6 promoter region responsive to MEF2B, we demonstrated that most of the N-terminal mutations cause increased transcriptional activity as tested on the BCL6 promoter. The analysis of the N-terminal MEF2B crystal structure, upon mapping the mutated residues, predicted that these mutations may interfere with the ability of MEF2B to heterodimerize with the CABIN1 co-repressor. Indeed, we showed that these MEF2B mutant proteins fail to bind CABIN1 and are resistant to its transrepressive activity. Conversely, C-terminal MEF2B mutations lead to truncated MEF2B proteins lacking the domains responsive to two independent post-transcriptional modifications, namely PKA-mediated phosphorylation and sumoylation. We showed that MEF2B is in fact phosphorylated by PKA and sumoylated in vivo, that both of these modifications lead to negative regulation of MEF2B transcriptional activity, and that lymphoma-associated C-terminal mutants fail to be negatively regulated by PKA-mediated phosphorylation and sumoylation. In summary, these results identify MEF2B as an upstream regulator of BCL6 and GC formation, which is required for lymphoma proliferation. Lymphoma-associated MEF2B mutations may contribute to lymphomagenesis, at least in part, by deregulating the expression of the BCL6 oncogene. Thus, targeting MEF2B may represent an alternative therapeutic approach to block BCL6 and cell proliferation in DLBCL and FL. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2009 ◽  
Vol 113 (20) ◽  
pp. 4885-4893 ◽  
Author(s):  
Junji Hiraga ◽  
Akihiro Tomita ◽  
Takumi Sugimoto ◽  
Kazuyuki Shimada ◽  
Masafumi Ito ◽  
...  

Although rituximab is a key molecular targeting drug for CD20-positive B-cell lymphomas, resistance to rituximab has recently been recognized as a considerable problem. Here, we report that a CD20-negative phenotypic change after chemotherapies with rituximab occurs in a certain number of CD20-positive B-cell lymphoma patients. For 5 years, 124 patients with B-cell malignancies were treated with rituximab-containing chemotherapies in Nagoya University Hospital. Relapse or progression was confirmed in 36 patients (29.0%), and a rebiopsy was performed in 19 patients. Of those 19, 5 (26.3%; diffuse large B-cell lymphoma [DLBCL], 3 cases; DLBCL transformed from follicular lymphoma, 2 cases) indicated CD20 protein-negative transformation. Despite salvage chemotherapies without rituximab, all 5 patients died within 1 year of the CD20-negative transformation. Quantitative reverse-transcription–polymerase chain reaction (RT-PCR) showed that CD20 mRNA expression was significantly lower in CD20-negative cells than in CD20-positive cells obtained from the same patient. Interestingly, when CD20-negative cells were treated with 5-aza-2′-deoxycytidine in vitro, the expression of CD20 mRNA was stimulated within 3 days, resulting in the restoration of both cell surface expression of the CD20 protein and rituximab sensitivity. These findings suggest that some epigenetic mechanisms may be partly related to the down-regulation of CD20 expression after rituximab treatment.


Cancers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2865 ◽  
Author(s):  
Céline Pangault ◽  
Patricia Amé-Thomas ◽  
Delphine Rossille ◽  
Joëlle Dulong ◽  
Gersende Caron ◽  
...  

Follicular lymphoma (FL), the most frequent indolent non-Hodgkin’s B cell lymphoma, is considered as a prototypical centrocyte-derived lymphoma, dependent on a specific microenvironment mimicking the normal germinal center (GC). In agreement, several FL genetic alterations affect the crosstalk between malignant B cells and surrounding cells, including stromal cells and follicular helper T cells (Tfh). In our study, we sought to deconvolute this complex FL supportive synapse by comparing the transcriptomic profiles of GC B cells, Tfh, and stromal cells, isolated from normal versus FL tissues, in order to identify tumor-specific pathways. In particular, we highlighted a high expression of IL-6 and IL-7 in FL B cells that could favor the activation of FL Tfh overexpressing IFNG, able in turn to stimulate FL B cells without triggering MHC (major histocompatibility) class II expression. Moreover, the glycoprotein clusterin was found up-regulated in FL stromal cells and could promote FL B cell adhesion. Finally, besides its expression on Tfh, CD200 was found overexpressed on tumor B cells and could contribute to the induction of the immunosuppressive enzyme indoleamine-2,3 dioxygenase by CD200R-expressing dendritic cells. Altogether our findings led us to outline the contribution of major signals provided by the FL microenvironment and their interactions with malignant FL B cells.


2021 ◽  
Vol 11 ◽  
Author(s):  
Huan-You Wang ◽  
Ethan S. Sokol ◽  
Aaron M. Goodman ◽  
Andrew L. Feldman ◽  
Carolyn M. Mulroney

The pathogenesis of follicular lymphoma is a multi-step process, in which chromosomal translocation between immunoglobulin heavy chain (IgH) and anti-apoptotic B-cell lymphoma 2 (BCL2), namely IgH-BCL2, is an earliest step, followed by other genetic/genomic alterations including but not limited to mutation of CREB binding protein (CREBBP). MHC class II transactivator (CIITA) is a transcription regulator responsible for expression of MHC class II molecules including HLA-DR in human. We report herein a novel fusion gene involving CIITA and CREBBP in a patient with a low-grade follicular lymphoma (FL) but with high Ki-67 proliferation index. In addition, our patient also harbors CREBBP mutation. Together, we postulate that total loss of CREBBP function may contribute, in part, to the lymphoma genesis. Furthermore, this patient has addition rare (TBL1XR1-TP63) and common (IgH-BCL2) chromosomal translocations and multiple mutations including BCL2, BRAF, MUTYH, and STAT6.


1988 ◽  
Vol 167 (2) ◽  
pp. 541-555 ◽  
Author(s):  
I J Griffith ◽  
N Nabavi ◽  
Z Ghogawala ◽  
C G Chase ◽  
M Rodriguez ◽  
...  

We have selected Ia variants from the Ia+ (H-2d) M12.4.1 B cell lymphoma that are negative on the cell surface for one or both Ia isotypes. The molecular analysis of two such independently selected cell lines, M12.A2 and M12.C3, is reported here. This analysis revealed that the genes encoding Ad beta (M12.A2) and Ed beta (M12.C3) contained identical single-nucleotide transitions that resulted in the substitution of Ser (mutant) for Asn (wild-type) at residue 82/83 of the extracellular NH2-terminal (membrane distal) beta 1 domain. This conservative substitution caused a cytoplasmic accumulation of I-A or I-E molecules in the respective cell line although predicted secondary-structure analysis suggests a minimal effect on protein conformation. Thus, the mutation appears to have either created a negative signal that stops transport or eliminated a positive signal that is required for transport and targeting to the cell surface.


Blood ◽  
2021 ◽  
Author(s):  
Alanna Claire Green ◽  
Gavin Tjin ◽  
Samuel C Lee ◽  
Alistair M Chalk ◽  
Lenny Straszkowski ◽  
...  

Hematopoiesis is extrinsically controlled by cells of the bone marrow microenvironment, including skeletal lineage cells. The identification and subsequent studies of distinct subpopulations of maturing skeletal cells is currently limited due to a lack of methods to isolate these cells. We found that murine Lineage-CD31-Sca-1-CD51+ cells can be divided into four subpopulations using flow cytometry, based on their expression of the platelet derived growth factor receptors ⍺ and β (PDGFR⍺ and PDGFRβ). The use of different skeletal lineage reporters confirmed the skeletal origin of the four populations. Multiplex immunohistochemistry studies revealed that all four populations were localized near the growth plate and trabecular bone and were rarely found near cortical bone regions or in central bone marrow. Functional studies revealed differences in their abundance, colony-forming unit-fibroblast capacity and potential to differentiate into mineralized osteoblasts or adipocytes in vitro. Furthermore, the four populations had distinct gene expression profiles and differential cell surface expression of leptin receptor (LEPR) and vascular cell adhesion molecule 1 (VCAM-1). Interestingly, we discovered that one of these four different skeletal populations showed the highest expression of genes involved in the extrinsic regulation of B lymphopoiesis. This cell population varied in abundance between distinct hematopoietically active skeletal sites, and significant differences in the proportions of B lymphocyte precursors were also observed in these distinct skeletal sites. It also supported pre-B lymphopoiesis in culture. Our method to isolate four distinct maturing skeletal populations will assist in elucidating the roles of distinct skeletal niche cells in regulating hematopoiesis and bone.


2021 ◽  
Vol 118 (22) ◽  
pp. e2104504118
Author(s):  
Marco Fangazio ◽  
Erik Ladewig ◽  
Karen Gomez ◽  
Laura Garcia-Ibanez ◽  
Rahul Kumar ◽  
...  

Fifty percent of diffuse large B cell lymphoma (DLBCL) cases lack cell-surface expression of the class I major histocompatibility complex (MHC-I), thus escaping recognition by cytotoxic T cells. Here we show that, across B cell lymphomas, loss of MHC-I, but not MHC-II, is preferentially restricted to DLBCL. To identify the involved mechanisms, we performed whole exome and targeted HLA deep-sequencing in 74 DLBCL samples, and found somatic inactivation of B2M and the HLA-I loci in 80% (34 of 42) of MHC-INEG tumors. Furthermore, 70% (22 of 32) of MHC-IPOS DLBCLs harbored monoallelic HLA-I genetic alterations (MHC-IPOS/mono), indicating allele-specific inactivation. MHC-INEG and MHC-IPOS/mono cases harbored significantly higher mutational burden and inferred neoantigen load, suggesting potential coselection of HLA-I loss and sustained neoantigen production. Notably, the analysis of >500,000 individuals across different cancer types revealed common germline HLA-I homozygosity, preferentially in DLBCL. In mice, germinal-center B cells lacking HLA-I expression did not progress to lymphoma and were counterselected in the context of oncogene-driven lymphomagenesis, suggesting that additional events are needed to license immune evasion. These results suggest a multistep process of HLA-I loss in DLBCL development including both germline and somatic events, and have direct implications for the pathogenesis and immunotherapeutic targeting of this disease.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. SCI-14-SCI-14
Author(s):  
Laura Pasqualucci

Diffuse large B-cell lymphoma (DLBCL), the most common form of human lymphoma, is an aggressive malignancy comprising multiple phenotypically and genetically distinct subtypes, approximately 40% of which are incurable. These tumors may arise de novo or from the transformation of more indolent lymphomas, as observed in 30-40% of follicular lymphoma (FL) and 5-12% of chronic lymphocytic leukemia cases. Over the last decade, the introduction of next-generation sequencing technologies combined with genome-wide copy number analysis has allowed a comprehensive definition of the genetic lesions that are associated with the pathogenesis of these malignancies, leading to the identification of several previously unappreciated targets1-3. These lesions, in turn, uncovered dysregulated cellular pathways that represent potential targets for improved diagnosis and therapy. Among the most common genetic alterations found in both de novo DLBCL and transformed FL (tFL) are those targeting histone/chromatin modifiers; in particular, loss-of-function mutations in the genes encoding for the H3K4 methyltransferase MLL2 and the acetyltransferases CREBBP/EP300, together with gain-of-function mutations of the EZH2 H3K27 methyltransferase are observed in over 50% of DLBCL and 90% of tFL patients, suggesting a major role for these enzymes in altering gene expression during malignant transformation. Interestingly, sequential analysis of tumor samples isolated at FL diagnosis and at evolution to DLBCL indicates that inactivating mutations of CREBBP and MLL2 represent early events acquired during the initial expansion of a common ancestral clone4. Disruption of epigenetic modifiers by genetic alterations may thus contribute to malignant transformation by shaping the epigenetic landscape of the cancer cell as well as by perturbing specific biological programs. In line with this hypothesis, we have shown that mutations of CREBBP/EP300 disrupt the balance between acetylation-mediated activation of the p53 tumor suppressor and inactivation of the BCL6 proto-oncogene5. The lecture will cover recent advances in our understanding of the genetic basis of this disease, with emphasis on the role of epigenetic regulators in normal germinal center development and lymphomagenesis, as revealed by in vitro and in vivo studies. References: 1. Pasqualucci L, Trifonov V, Fabbri G, et al. Analysis of the coding genome of diffuse large B-cell lymphoma. Nat Genet. 2011; 43: 830-837. 2. Morin RD, Mendez-Lago M, Mungall AJ, et al. Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma. Nature. 2011; 476: 298-303. 3. Lohr JG, Stojanov P, Lawrence MS, et al. Discovery and prioritization of somatic mutations in diffuse large B-cell lymphoma (DLBCL) by whole-exome sequencing. Proc Natl Acad Sci U S A. 2012; 109: 3879-3884. 4. Pasqualucci L, Khiabanian H, Fangazio M, et al., Genetics of follicular lymphoma transformation. Cell Rep. 2014; 6:130-140. 5. Pasqualucci L, Dominguez-Sola D, Trifonov V, et al. Inactivating mutations of acetyltransferase genes in B-cell lymphoma. Nature. 2011; 471: 189-195. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document