scholarly journals Dynamic Activity of Histone H3-Specific Chaperone Complexes in Oncogenesis

2022 ◽  
Vol 11 ◽  
Author(s):  
Ting Wen ◽  
Qiao Yi Chen

Canonical histone H3.1 and variant H3.3 deposit at different sites of the chromatin via distinct histone chaperones. Histone H3.1 relies on chaperone CAF-1 to mediate replication-dependent nucleosome assembly during S-phase, while H3.3 variant is regulated and incorporated into the chromatin in a replication-independent manner through HIRA and DAXX/ATRX. Current literature suggests that dysregulated expression of histone chaperones may be implicated in tumor progression. Notably, ectopic expression of CAF-1 can promote a switch between canonical H3.1 and H3 variants in the chromatin, impair the chromatic state, lead to chromosome instability, and impact gene transcription, potentially contributing to carcinogenesis. This review focuses on the chaperone proteins of H3.1 and H3.3, including structure, regulation, as well as their oncogenic and tumor suppressive functions in tumorigenesis.

2012 ◽  
Vol 40 (2) ◽  
pp. 357-363 ◽  
Author(s):  
Wallace H. Liu ◽  
Mair E.A. Churchill

The eukaryotic processes of nucleosome assembly and disassembly govern chromatin dynamics, in which histones exchange in a highly regulated manner to promote genome accessibility for all DNA-dependent processes. This regulation is partly carried out by histone chaperones, which serve multifaceted roles in co-ordinating the interactions of histone proteins with modification enzymes, nucleosome remodellers, other histone chaperones and nucleosomal DNA. The molecular details of the processes by which histone chaperones promote delivery of histones among their many functional partners are still largely undefined, but promise to offer insights into epigenome maintenance. In the present paper, we review recent findings on the histone chaperone interactions that guide the assembly of histones H3 and H4 into chromatin. This evidence supports the concepts of histone post-translational modifications and specific histone chaperone interactions as guiding principles for histone H3/H4 transactions during chromatin assembly.


2021 ◽  
Author(s):  
Chao-Pei Liu ◽  
Wenxing Jin ◽  
Jie Hu ◽  
Mingzhu Wang ◽  
Jingjing Chen ◽  
...  

Chromosomal duplication requires de novo assembly of nucleosomes from newly synthesized histones, and the process involves a dynamic network of interactions between histones and histone chaperones. sNASP and ASF1 are two major histone H3–H4 chaperones found in distinct and common complexes, yet how sNASP binds H3–H4 in the presence and absence of ASF1 remains unclear. Here we show that, in the presence of ASF1, sNASP principally recognizes a partially unfolded Nα region of histone H3, and in the absence of ASF1, an additional sNASP binding site becomes available in the core domain of the H3–H4 complex. Our study also implicates a critical role of the C-terminal tail of H4 in the transfer of H3–H4 between sNASP and ASF1 and the coiled-coil domain of sNASP in nucleosome assembly. These findings provide mechanistic insights into coordinated histone binding and transfer by histone chaperones.


2018 ◽  
Vol 115 (9) ◽  
pp. E2030-E2039 ◽  
Author(s):  
Ryan Janke ◽  
Grant A. King ◽  
Martin Kupiec ◽  
Jasper Rine

In Saccharomyces cerevisiae, heterochromatin structures required for transcriptional silencing of the HML and HMR loci are duplicated in coordination with passing DNA replication forks. Despite major reorganization of chromatin structure, the heterochromatic, transcriptionally silent states of HML and HMR are successfully maintained throughout S-phase. Mutations of specific components of the replisome diminish the capacity to maintain silencing of HML and HMR through replication. Similarly, mutations in histone chaperones involved in replication-coupled nucleosome assembly reduce gene silencing. Bridging these observations, we determined that the proliferating cell nuclear antigen (PCNA) unloading activity of Elg1 was important for coordinating DNA replication forks with the process of replication-coupled nucleosome assembly to maintain silencing of HML and HMR through S-phase. Collectively, these data identified a mechanism by which chromatin reassembly is coordinated with DNA replication to maintain silencing through S-phase.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Salih Topal ◽  
Pauline Vasseur ◽  
Marta Radman-Livaja ◽  
Craig L. Peterson

Abstract Dynamic disruption and reassembly of promoter-proximal nucleosomes is a conserved hallmark of transcriptionally active chromatin. Histone H3-K56 acetylation (H3K56Ac) enhances these turnover events and promotes nucleosome assembly during S phase. Here we sequence nascent transcripts to investigate the impact of H3K56Ac on transcription throughout the yeast cell cycle. We find that H3K56Ac is a genome-wide activator of transcription. While H3K56Ac has a major impact on transcription initiation, it also appears to promote elongation and/or termination. In contrast, H3K56Ac represses promiscuous transcription that occurs immediately following replication fork passage, in this case by promoting efficient nucleosome assembly. We also detect a stepwise increase in transcription as cells transit S phase and enter G2, but this response to increased gene dosage does not require H3K56Ac. Thus, a single histone mark can exert both positive and negative impacts on transcription that are coupled to different cell cycle events.


2017 ◽  
Author(s):  
Ryan Janke ◽  
Grant King ◽  
Martin Kupiec ◽  
Jasper Rine

ABSTRACTIn Saccharomyces cerevisiae, heterochromatin structures required for transcriptional silencing of the HML and HMR loci are duplicated in coordination with passing DNA replication forks. Despite major reorganization of chromatin structure, the heterochromatic, transcriptionally-silent states of HML and HMR are successfully maintained throughout S-phase. Mutations of specific components of the replisome diminish the capacity to maintain silencing of HML and HMR through replication. Similarly, mutations in histone chaperones involved in replication-coupled nucleosome assembly reduce gene silencing. Bridging these observations, we determined that the PCNA unloading activity of Elg1 was important for coordinating DNA replication forks with the process of replication-coupled nucleosome assembly to maintain silencing of HML and HMR through S-phase. Collectively these data identified a mechanism by which chromatin reassembly is coordinated with DNA replication to maintain silencing through S-phase.SIGNIFICANCE STATEMENTDNA replication poses a unique logistical challenge for the cell in that structural features of chromatin and their regulatory functions must be carefully coordinated with passage of replication machinery so faithful duplication of both the genome and its chromatin structures may be achieved. Nucleosome assembly is fundamental to reestablishment of chromatin in the wake of DNA replication, and here a mechanism by which nucleosome assembly is coordinated with DNA replication to maintain silenced chromatin is described.


2008 ◽  
Vol 28 (11) ◽  
pp. 3672-3685 ◽  
Author(s):  
Angélique Galvani ◽  
Régis Courbeyrette ◽  
Morgane Agez ◽  
Françoise Ochsenbein ◽  
Carl Mann ◽  
...  

ABSTRACT Histone chaperones have been implicated in nucleosome assembly and disassembly as well as histone modification. ASF1 is a highly conserved histone H3/H4 chaperone that synergizes in vitro with two other histone chaperones, chromatin assembly factor 1 (CAF-1) and histone repression A factor (HIRA), in DNA synthesis-coupled and DNA synthesis-independent nucleosome assembly. Here, we identify mutants of histones H3.1 and H3.3 that are unable to interact with human ASF1A and ASF1B isoforms but that are still competent to bind CAF-1 and HIRA, respectively. We show that these mutant histones are inefficiently deposited into chromatin in vivo. Furthermore, we found that both ASF1A and ASF1B participate in the DNA synthesis-independent deposition of H3.3 in HeLa cells, thus highlighting an unexpected role for ASF1B in this pathway. This pathway does not require interaction of ASF1 with HIRA. We provide the first direct determination that ASF1A and ASF1B play a role in the efficiency of nucleosome assembly in vivo in human cells.


1997 ◽  
Vol 17 (9) ◽  
pp. 5640-5647 ◽  
Author(s):  
D Resnitzky

Normal fibroblasts are dependent on adhesion to a substrate for cell cycle progression. Adhesion-deprived Rat1 cells arrest in the G1 phase of the cell cycle, with low cyclin E-dependent kinase activity, low levels of cyclin D1 protein, and high levels of the cyclin-dependent kinase inhibitor p27kip1. To understand the signal transduction pathway underlying adhesion-dependent growth, it is important to know whether prevention of any one of these down-regulation events under conditions of adhesion deprivation is sufficient to prevent the G1 arrest. To that end, sublines of Rat1 fibroblasts capable of expressing cyclin E, cyclin D1, or both in an inducible manner were used. Ectopic expression of cyclin D1 was sufficient to allow cells to enter S phase in an adhesion-independent manner. In contrast, cells expressing exogenous cyclin E at a level high enough to overcome the p27kip1-imposed inhibition of cyclin E-dependent kinase activity still arrested in G1 when deprived of adhesion. Moreover, expression of both cyclins D1 and E in the same cells did not confer any additional growth advantage upon adhesion deprivation compared to the expression of cyclin D1 alone. Exogenously expressed cyclin D1 was down-regulated under conditions of adhesion deprivation, despite the fact that it was expressed from a heterologous promoter. The ability of cyclin D1-induced cells to enter S phase in an adhesion-independent manner disappears as soon as cyclin D1 proteins disappear. These results suggest that adhesion-dependent cell cycle progression is mediated through cyclin D1, at least in Rat1 fibroblasts.


2005 ◽  
Vol 168 (7) ◽  
pp. 999-1012 ◽  
Author(s):  
Jeff Bachant ◽  
Shannon R. Jessen ◽  
Sarah E. Kavanaugh ◽  
Candida S. Fielding

The budding yeast S phase checkpoint responds to hydroxyurea-induced nucleotide depletion by preventing replication fork collapse and the segregation of unreplicated chromosomes. Although the block to chromosome segregation has been thought to occur by inhibiting anaphase, we show checkpoint-defective rad53 mutants undergo cycles of spindle extension and collapse after hydroxyurea treatment that are distinct from anaphase cells. Furthermore, chromatid cohesion, whose dissolution triggers anaphase, is dispensable for S phase checkpoint arrest. Kinetochore–spindle attachments are required to prevent spindle extension during replication blocks, and chromosomes with two centromeres or an origin of replication juxtaposed to a centromere rescue the rad53 checkpoint defect. These observations suggest that checkpoint signaling is required to generate an inward force involved in maintaining preanaphase spindle integrity during DNA replication distress. We propose that by promoting replication fork integrity under these conditions Rad53 ensures centromere duplication. Replicating chromosomes can then bi-orient in a cohesin-independent manner to restrain untimely spindle extension.


2021 ◽  
Vol 12 (7) ◽  
Author(s):  
Qian Liu ◽  
Lijuan Guo ◽  
Hongyan Qi ◽  
Meng Lou ◽  
Rui Wang ◽  
...  

AbstractRibonucleotide reductase (RR) is a unique enzyme for the reduction of NDPs to dNDPs, the building blocks for DNA synthesis and thus essential for cell proliferation. Pan-cancer profiling studies showed that RRM2, the small subunit M2 of RR, is abnormally overexpressed in multiple types of cancers; however, the underlying regulatory mechanisms in cancers are still unclear. In this study, through searching in cancer-omics databases and immunohistochemistry validation with clinical samples, we showed that the expression of MYBL2, a key oncogenic transcriptional factor, was significantly upregulated correlatively with RRM2 in colorectal cancer (CRC). Ectopic expression and knockdown experiments indicated that MYBL2 was essential for CRC cell proliferation, DNA synthesis, and cell cycle progression in an RRM2-dependent manner. Mechanistically, MYBL2 directly bound to the promoter of RRM2 gene and promoted its transcription during S-phase together with TAF15 and MuvB components. Notably, knockdown of MYBL2 sensitized CRC cells to treatment with MK-1775, a clinical trial drug for inhibition of WEE1, which is involved in a degradation pathway of RRM2. Finally, mouse xenograft experiments showed that the combined suppression of MYBL2 and WEE1 synergistically inhibited CRC growth with a low systemic toxicity in vivo. Therefore, we propose a new regulatory mechanism for RRM2 transcription for CRC proliferation, in which MYBL2 functions by constituting a dynamic S-phase transcription complex following the G1/early S-phase E2Fs complex. Doubly targeting the transcription and degradation machines of RRM2 could produce a synthetic inhibitory effect on RRM2 level with a novel potential for CRC treatment.


2000 ◽  
Vol 20 (16) ◽  
pp. 5986-5997 ◽  
Author(s):  
Beatrix A. Slomiany ◽  
Kenneth L. D'Arigo ◽  
Margaret M. Kelly ◽  
David T. Kurtz

ABSTRACT Using an inducible transcription system which allows the regulated expression of C/EBP isoforms in tissue culture cells, we have found that the ectopic expression of C/EBPα, at a level comparable to that found in normal liver tissue, has a pronounced antimitogenic effect in mouse L cells and NIH 3T3 cells. The inhibition of cell division by C/EBPα in mouse cells cannot be reversed by simian virus 40 T antigen, by oncogenic ras, or by adenovirus E1a protein. When expressed in thymidine kinase-deficient L cells or 3T3 cells, C/EBPα is detected in a protein complex which binds to the E2F binding sites found in the promoters of the genes for E2F-1 and dihydrofolate reductase (DHFR). Bacterially expressed C/EBPα has no affinity for these E2F sites, but when recombinant C/EBPα is added to nuclear extracts from mouse fibroblasts, a new E2F binding activity appears, which contains the C/EBPα protein. Using an E2F-DP1-responsive promoter linked to a reporter gene, it can be shown that C/EBPα directly inhibits the induction of this promoter by E2F-DP1 in transient-transfection assays. Furthermore, C/EBPα can be shown to inhibit the S-phase induction of the E2F and DHFR promoters in permanent cell lines. These findings delineate a straightforward mechanism for C/EBPα-mediated cell growth arrest through repression of E2F-DP-mediated S-phase transcription.


Sign in / Sign up

Export Citation Format

Share Document