scholarly journals Molecular Mechanisms of T Cells Activation by Dendritic Cells in Autoimmune Diseases

2018 ◽  
Vol 9 ◽  
Author(s):  
Yu Tai ◽  
Qingtong Wang ◽  
Heinrich Korner ◽  
Lingling Zhang ◽  
Wei Wei
2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Song Chen ◽  
Ran Ding ◽  
Yan Zhou ◽  
Xian Zhang ◽  
Rui Zhu ◽  
...  

YCP, as a kind of natural polysaccharides from the mycelium of marine filamentous fungusPhoma herbarumYS4108, has great antitumor potentialviaenhancement of host immune response, but little is known about the molecular mechanisms. In the present study, we mainly focused on the effects and mechanisms of YCP on the specific immunity mediated by dendritic cells (DCs) and T cells. T cell /DC activation-related factors including interferon- (IFN-)γ, interleukin-12 (IL-12), and IL-4 were examined with ELISA. Receptor knock-out mice and fluorescence-activated cell sorting are used to analyze the YCP-binding receptor of T cells and DCs. RT-PCR is utilized to measure MAGE-A3 for analyzing the tumor-specific killing effect. In our study, we demonstrated YCP can provide the second signal for T cell activation, proliferation, and IFN-γproduction through binding to toll-like receptor- (TLR-) 2 and TLR-4. YCP could effectively promote IL-12 secretion and expression of markers (CD80, CD86, and MHC II)viaTLR-4 on DCs. Antigen-specific immunity against mouse melanoma cells was strengthened through the activation of T cells and the enhancement of capacity of DCs by YCP. The data supported that YCP can exhibit specific immunomodulatory capacity mediated by T cells and DCs.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Chun Yuen J. Chung ◽  
Dirk Ysebaert ◽  
Zwi N. Berneman ◽  
Nathalie Cools

In general, immunological tolerance is acquired upon treatment with non-specific immunosuppressive drugs. This indiscriminate immunosuppression of the patient often causes serious side-effects, such as opportunistic infectious diseases. Therefore, the need for antigen-specific modulation of pathogenic immune responses is of crucial importance in the treatment of inflammatory diseases. In this perspective, dendritic cells (DCs) can have an important immune-regulatory function, besides their notorious antigen-presenting capacity. DCs appear to be essential for both central and peripheral tolerance. In the thymus, DCs are involved in clonal deletion of autoreactive immature T cells by presenting self-antigens. Additionally, tolerance is achieved by their interactions with T cells in the periphery and subsequent induction of T cell anergy, T cell deletion, and induction of regulatory T cells (Treg). Various studies have described, modulation of DC characteristics with the purpose to induce antigen-specific tolerance in autoimmune diseases, graft-versus-host-disease (GVHD), and transplantations. Promising results in animal models have prompted researchers to initiate first-in-men clinical trials. The purpose of current review is to provide an overview of the role of DCs in the immunopathogenesis of autoimmunity, as well as recent concepts of dendritic cell-based therapeutic opportunities in autoimmune diseases.


2019 ◽  
Vol 68 (3) ◽  
pp. 728-737 ◽  
Author(s):  
Ji-Gang He ◽  
Bei-Bei Li ◽  
Liang Zhou ◽  
Dan Yan ◽  
Qiao-Li Xie ◽  
...  

Expression of indoleamine 2,3-dioxygenase (IDO) in mesenchymal stem cells (MSC) is thought to contribute to MSC-mediated immunosuppression. A lentiviral-based transgenic system was used to generate bone marrow stem cells (BMSC) which stably expressed IDO (IDO-BMSCs). Coculture of IDO-BMSCs with dendritic cells (DC) or T cells was used to evaluate the immunomodulatory effect of IDO-BMSCs. A heterotopic heart transplant model in rats was used to evaluate allograft rejection after IDO-BMSC treatment. Mechanisms of IDO-BMSC-mediated immunosuppression were investigated by evaluating levels of proinflammatory and anti-inflammatory cytokines, and production of Tregs. A significant decrease in DC marker-positive cells and a significant increase in Tregs were observed in IDO-BMSC cocultured. Treatment of transplanted rats with IDO-BMSCs was associated with significantly prolonged graft survival. Compared with the control groups, transplanted animals treated with IDO-BMSCs had a (1) significantly higher ejection fraction and fractional shortening, (2) significantly lower expression of CD86, CD80, and MHCII, and significantly higher expression in CD274, and Tregs, and (3) significantly higher levels of interleukin-10 (IL-10), transforming growth factor beta-1 (TGF-β1), TGF-β2, and TGF-β3, and significantly lower levels of IL-2 and interferon gamma. Our results expand our understanding of the molecular mechanisms underlying suppression of heart allograft rejection via IDO-expressing BMSCs.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 308-308
Author(s):  
Qing Ma ◽  
Dan Li ◽  
Roza Nurieva ◽  
Hernan G. Vasquez ◽  
Richard E Champlin ◽  
...  

Abstract Abstract 308 Graft-vs-host disease (GVHD) is an alloimmune response after allogeneic hematopoietic stem transplantation (HSCT) mediated by donor T cells against antigen presented by recipient dendritic cells. Our studies with a murine model of GVHD indicate that the complement system regulates the alloimmune response leading to acute GVHD. We used the disparity in MHC class I and II antigens between BALB/c (H-2d) as donors and either wild-type (WT) or complement deficient C57BL/6 (H-2b) as recipients. We found that mice deficient in the central component of the complement system (C3−/−) had significantly lower GVHD-related mortality and morbidity compared to WT recipient mice. Within 8 weeks after BMT, 80% of WT recipient mice and only 25% of C3−/− mice died (p=0.0008, n=20 in each group). While WT mice showed a moderate to severe GVHD in the skin, intestine, liver, lung and kidney, C3−/− mice had mild changes in these organs, reflected in a significantly lower GVHD scores compared to WT mice. Donor T cells proliferation is a critical step in development of GVHD. Therefore, we analyzed donor-derived T cells in C3−/− mice 7 days post-transplant, and found a significantly lower number of CD4+ and CD8+ T cells in spleen, lymph node and Peyer's patches compared to those in WT mice. Complement deficiency not only affected the number of T cells but also their polarization. In the spleen and lymph nodes of C3−/−mice, we found a significantly lower number of IFNg-producing T cells and Th17+IFNg+ cells compared to WT recipients, consistent with a reduced Th1 and Th17+ differentiation of donor T cells in C3−/− recipient mice. Since the interaction between recipient-derived dendritic cells (DCs) and donor T cells is one of the initial events in the pathogenesis of the alloimmune response in GVHD, we analyzed both lymphoid and nonlymphoid DCs in the C3−/− recipient mice. Murine lymphoid DCs are divided into CD8a+ and CD8a− subsets that stimulate Th1 and Th2 cells, respectively. We detected a significantly lower number of CD8a+ (Th1-driven) and higher number of CD8a− (Th2-driven) DCs in the spleen of C3−/− recipient compared to WT mice. Additionally, the number of CD8a+ DCs was significant decreased in lymph node of C3−/− mice. In the nonlymphoid tissues, CD103+ DCs are developmentally and functionally related to the CD8a+ DCs. We studied DCs in the lung, liver, intestine and skin of recipient mice and found a significant reduction in the number of CD103+ DCs in the lung of C3−/− compared to WT recipient mice. Thus, C3 deficiency is associated with a decrease in Th1-driven DCs in both lymphoid (CD8a+) and nonlymphoid organs (CD103+) resulting in a reduced donor Th1 differentiation in C3−/− recipient mice. In the present study, we show for the first time that complement plays a role in GVHD. Our results are consistent with the findings of previous studies showing that C3 production by DCs in allograft is essential for maturation of DCs, effective antigen presentation to alloreactive T cells, and the development of Th1 response. We demonstrated that a similar effect of complement after BMT might be important in regulating Th1-driven DC activation and donor Th1/Th17differentiation, and in determining the severity of GVHD. Our study improves the understanding of the molecular mechanisms of GVHD and provides a rationale for using complement inhibitors as a novel potential therapeutic tool in GVHD. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Haiting Wang ◽  
Xiangyu Teng ◽  
Georges Abboud ◽  
Wei Li ◽  
Shuang Ye ◽  
...  

Abstract Background Systemic lupus erythematosus is an autoimmune disease characterized by an overproduction of autoantibodies resulting from dysregulation in multiple immune cell types. D-mannose is a C− 2 epimer of glucose that exhibits immunoregulatory effects in models of autoimmune diseases, such as type 1 diabetes, induced rheumatoid arthritis, and airway inflammation. This study was conducted to evaluate the efficacy of D-mannose treatment in mouse models of lupus. Results Firstly, the effect of D-Mannose was evaluated by flow cytometry on the in vitro activation of non-autoimmune C57BL/6 (B6) bone marrow-derived dendritic cells (BMDCs) and their ability to induce antigen-specific CD4+ T cell proliferation and activation. D-mannose inhibited the maturation of BMDCs and their induction of antigen-specific T cell proliferation and activation. In vivo, D-mannose increased the frequency of Foxp3+ regulatory T cells in unmanipulated B6 mice. To assess the effect of D-mannose in mouse models of lupus, we used the graft-versus-host disease (cGVHD) induced model and the B6.lpr spontaneous model. In the cGVHD model, D-mannose treatment decreased autoantibody production, with a concomitant reduction of the frequency of effector memory and follicular helper T cells as well as germinal center B cells and plasma cells. These results were partially validated in the B6.lpr model of spontaneous lupus. Conclusion Overall, our results suggest that D-mannose ameliorates autoimmune activation in models of lupus, at least partially due to its expansion of Treg cells, the induction of immature conventional dendritic cells and the downregulation of effector T cells activation. D-Mannose showed however a weaker immunomodulatory effect in lupus than in other autoimmune diseases.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yifeng Liu ◽  
Xiaoze Wang ◽  
Fan Yang ◽  
Yanyi Zheng ◽  
Tinghong Ye ◽  
...  

Dendritic cells (DCs) are professional antigen-presenting cells that act as a bridge between innate immunity and adaptive immunity. After activation, DCs differentiate into subtypes with different functions, at which point they upregulate co-stimulatory molecules and produce various cytokines and chemokines. Activated DCs also process antigens for presentation to T cells and regulate the differentiation and function of T cells to modulate the immune state of the body. Non-coding RNAs, RNA transcripts that are unable to encode proteins, not only participate in the pathological mechanisms of autoimmune-related diseases but also regulate the function of immune cells in these diseases. Accumulating evidence suggests that dysregulation of non-coding RNAs contributes to DC differentiation, functions, and so on, consequently producing effects in various autoimmune diseases. In this review, we summarize the main non-coding RNAs (miRNAs, lncRNAs, circRNAs) that regulate DCs in pathological mechanisms and have tremendous potential to give rise to novel therapeutic targets and strategies for multiple autoimmune diseases and immune tolerance-related diseases.


2019 ◽  
Author(s):  
Giuseppa Piras ◽  
Lorenza Rattazzi ◽  
Nikolaos Paschalidis ◽  
Silvia Oggero ◽  
Giulio Berti ◽  
...  

AbstractPatients suffering from autoimmune diseases are more susceptible to mental disorders yet, the existence of specific cellular and molecular mechanisms behind the co-morbidity of these pathologies is far from being fully elucidated. By generating transgenic mice overexpressing Annexin-A1 exclusively in T cells to study its impact in models of autoimmune diseases, we made the unpredicted observation of an increased level of anxiety. Gene microarray of Annexin-A1 CD4+ T cells identified a novel anxiogenic factor, a small protein of approximately 21kDa encoded by the gene 2610019F03Rik which we named Immuno-moodulin. Neutralizing antibodies against Immuno-moodulin reverted the behavioral phenotype of Annexin-A1 transgenic mice and lowered the basal levels of anxiety in wild type mice; moreover, we also found that patients suffering from obsessive compulsive disorders show high levels of Imood in their peripheral mononuclear cells. We thus identify this protein as a novel peripheral determinant that modulates anxiety behavior. Therapies targeting Immuno-moodulin may lead to a new type of treatment for mental disorders through regulation of the functions of the immune system, rather than directly acting on the nervous system.


2021 ◽  
Vol 20 (1) ◽  
pp. 99-113
Author(s):  
E. P. Kiseleva ◽  
K. I. Mikhailopulo ◽  
G. I. Novik ◽  
N. F. Soroka

Infectious agents are well-known ecological factors inducing/accelerating human autoimmune diseases. Host infection by a pathogen can lead to autoimmunity via multiple mechanisms: molecular mimicry; epitope spreading and presentation of cryptic epitopes of self-antigen owing to lysis of self-tissue by persisting pathogen or immune cells; bystander activation, adjuvant effect of pathogens as a result of non-specific activation of immune system; polyclonal activation of B-cells by chronic infection; activation of T-cells by bacterial superantigens. Infectious agents and nonpathogenic microorganisms can also protect from autoimmune diseases via activation of regulatory T-cells and displacement of balance between two classes of T helper cells in favor of Th2. This study is supported by the Independent Ethics Committee and approved by the Academic Council of the Institute of Bioorganic Сhemistry, National Academy of Sciences of Belarus. 


Sign in / Sign up

Export Citation Format

Share Document