scholarly journals Insulin Resistance and Pellino-1 Mediated Decrease in the Activities of Vasodilator Signaling Contributes to Sunitinib-Induced Hypertension

2021 ◽  
Vol 12 ◽  
Author(s):  
Yang Liu ◽  
Liang-Liang Tang ◽  
Chen Liang ◽  
Ming-Ming Wu ◽  
Zhi-Ren Zhang

Antiangiogenic tyrosine kinases inhibitors induce hypertension, which may increase the incidents of cardiovascular complications and limit their use. However, the mechanisms by which usage of TKIs results in hypertension have not been fully understood. Here, we report the potential mechanisms of how sunitinib, a widely used TKI, induces hypertension. Male SD rats were randomly divided into control group and sunitinib-administrated group. We show that sunitinib administration for seven days caused a significant increase in artery blood pressure, along with glycerolipid metabolism abnormalities including decreased food intake and low body weight, hypoglycemia, hyperinsulinemia. Sunitinib administration also resulted in a significant increase in the levels of insulin autoantibody (IAA), cyclic adenosine monophosphate and free fatty acid in serum; whereas, sunitinib administration had no effects on serum glucagon levels. Sunitinib led to the decreased insulin sensitivity as determined by insulin tolerance test (ITT) and glucose tolerance test (GTT), reflecting insulin resistance occurred in sunitinib-treated rats. The results obtained from wire myograph assay in the mesenteric arteries show that endothelium-dependent relaxation, but not endothelium-independent relaxation, was impaired by sunitinib. Furthermore, western blot analysis revealed that the expressions levels of phosphorylated IRS-1, Pellino-1, AKT and eNOS were significantly attenuated by sunitinib in rat mesenteric artery tissues and in the sunitinib-treated primary cultured mesenteric artery endothelial cells. The levels of serum and endothelium-derived nitric oxide were also significantly decreased by sunitinib. Moreover, sunitinib-induced decrease in the expression levels of phosphorylated AKT and eNOS was further reduced by knocking down of Pellino-1 in MAECs. Our results suggest that sunitinib causes vascular dysfunction and hypertension, which are associated with insulin resistance- and Pellino-1-mediated inhibition of AKT/eNOS/NO signaling. Our results may provide a rational for preventing and/or treating sunitinib-induced endothelial dysfunction and hypertension.

2005 ◽  
Vol 289 (5) ◽  
pp. H2234-H2243 ◽  
Author(s):  
Takayuki Matsumoto ◽  
Kentaro Wakabayashi ◽  
Tsuneo Kobayashi ◽  
Katsuo Kamata

To assess the functional change in adenylyl cyclases (AC) associated with the diabetic state, we investigated AC-mediated relaxations and cAMP production in mesenteric arteries from rats with streptozotocin (STZ)-induced diabetes. The relaxations induced by the water-soluble forskolin (FSK) analog NKH477, which is a putative AC5 activator, but not by the β-adrenoceptor agonist isoproterenol (Iso) and the AC activator FSK, were reduced in intact diabetic mesenteric artery. In diabetic rats, however, Iso-, FSK-, and NKH477-induced relaxations were attenuated in the presence of inhibitors of nitric oxide synthase and cyclooxygenase. To exclude the influence of phosphodiesterase (PDE), we also examined the relaxations induced by several AC activators in the presence of 3-isobutyl-1-methylxanthine (IBMX; a PDE inhibitor). Under these conditions, the relaxation induced by Iso was greatly impaired in STZ-diabetic rats. This Iso-induced relaxation was significantly attenuated by pretreatment with SQ-22536, an AC inhibitor, in mesenteric rings from age-matched controls but not in those from STZ-diabetic rats. Under the same conditions, the relaxations induced by FSK or NKH477 were impaired in STZ-diabetic rats. Neither FSK- nor A-23187 (a Ca2+ ionophore)-induced cAMP production was significantly different between diabetics and controls. However, cAMP production induced by Iso or NKH477 was significantly impaired in diabetic mesenteric arteries. Expression of mRNAs and proteins for AC5/6 was lower in diabetic mesenteric arteries than in controls. These results suggest that AC-mediated relaxation is impaired in the STZ-diabetic rat mesenteric artery, perhaps reflecting a reduction in AC5/6 activity.


1998 ◽  
Vol 275 (3) ◽  
pp. R788-R792 ◽  
Author(s):  
Prasad V. G. Katakam ◽  
Michael R. Ujhelyi ◽  
Margarethe E. Hoenig ◽  
Allison Winecoff Miller

The insulin-resistant (IR) syndrome may be an impetus for the development of hypertension (HTN). Unfortunately, the mechanism by which this could occur is unclear. Our laboratory and others have described impaired endothelium-mediated relaxation in IR, mildly hypertensive rats. The purpose of the current study is to determine if HTN is most likely a cause or result of impaired endothelial function. Sprague-Dawley rats were randomized to receive a fructose-rich diet for 3, 7, 10, 14, 18, or 28 days or were placed in a control group. The control group received rat chow. After diet treatment, animals were instrumented with arterial cannulas, and while awake and unrestrained, their blood pressure (BP) was measured. Subsequently, endothelium-mediated relaxation to acetylcholine was determined (in vitro) by measuring intraluminal diameter of phenylephrine-preconstricted mesenteric arteries (∼250 μM). Serum insulin levels were significantly elevated in all groups receiving fructose feeding compared with control, whereas there were no differences in serum glucose levels between groups. Impairment of endothelium-mediated relaxation starts by day 14 [mean percent maximal relaxation (Emax): 69 ± 10% of baseline] and becomes significant by day 18 (Emax: 52 ± 11% of baseline; P < 0.01). However, the mean BP (mmHg) does not become significantly elevated until day 28 [BP: 132 ± 1 ( day 28) vs. 116 ± 3 (control); P < 0.05]. These findings demonstrate that both IR and endothelial dysfunction occur before HTN in this model and suggest that endothelial dysfunction may be a mechanism linking insulin resistance and essential HTN.


1993 ◽  
Vol 129 (4) ◽  
pp. 360-365 ◽  
Author(s):  
Clemens Fürnsinn ◽  
Peter Nowotny ◽  
Michael Roden ◽  
Madeleine Rohac ◽  
Thomas Pieber ◽  
...  

To compare the effect of short- vs long-term amylin infusion on insulin sensitivity, glucose tolerance and serum calcemia, euglycemic-hyperinsulinemic clamp (26 pmol·kg−1·min−1) and glucose tolerance tests (2.4 mmol/kg over 30 min) were performed in lean Zucker rats. Three infusion protocols were employed: control group: 24 h of iv saline; short-term amylin exposure: 22 h of iv saline followed by 2 h of iv amylin (20 μg/h); long-term amylin exposure: 24 h of iv amylin (20 μg/h). Insulin resistance was induced by short-term amylin infusion during euglycemic clamping, as shown by a 41% decrease in space-corrected glucose infusion rates (μmol·kg−1·min−1; control group, 106.0±15.0; short-term iv amylin, 62.7±15.0; p<0.00 5). After long-term amylin exposure, insulin sensitivity was identical to control values (109.9±6.7). This fading action of amylin was confirmed by data from the glucose tolerance test, demonstrating glucose intolerance after short- but not after long-term amylin exposure. Serum calcium concentration decreased during short-term (2 h) amylin infusion (from 2.52±0.15 to 2.09±0.12 mmol/l; p<0.01) and hypocalcemia of a similar extent also was present after 22 h and 24 h of amylin exposure (2.10±0.09 and 2.04±0.14 mmol/l, respectively). The data demonstrate that short-term amylin infusion induces insulin resistance and glucose intolerance, both of which vanish during long-term (>22 h) amylin exposure, being apparently independent of induced hypocalcemia.


1999 ◽  
Vol 162 (1) ◽  
pp. 87-93 ◽  
Author(s):  
T Johansen ◽  
M Deckert ◽  
T Mandrup-Poulsen ◽  
K Malmlof

Growth hormone (GH) can oppose the catabolic effects of glucocorticoids. However, both hormones have adverse effects on carbohydrate metabolism. Here we examined the interactive effects of GH and the glucocorticoid methylprednisolone (MP) on glucose tolerance, insulin resistance and [3H]2,6-deoxyglucose uptake of peripheral tissues in rats. Female Wistar rats received either saline, GH (2.7 mg/kg), MP (5.0 mg/kg) or GH+MP. After 7 days treatment, animals were subjected to an i.v. glucose tolerance test. In a second experiment, animals treated as above were anesthetized and injected with human insulin (0.5 U/kg), [3H]2,6-deoxyglucose (500 microCi/kg), and [14C]mannitol (25 microCi/kg), to estimate insulin resistance and [3H]2,6-deoxyglucose uptake in fat and muscle. Weight gain in controls was 7.6+/-1.7 g, while GH treatment increased the mean body weight by 18.7+/-2.2 g (P<0.0002) and MP inhibited weight gain down to 0.0+/-1.0 g (P<0.004). This drop in weight gain was reversed back to normal when GH was given in combination with MP. After a glucose tolerance test no significant differences in glucose area under the curve were detected when comparing individual groups with the control group, but samples taken just before this test revealed that basal insulin was significantly elevated in the group treated with GH (174+/-27 pM, P<0.008), or GH+MP (209+/-21 pM, P<0.004), when compared with controls (107+/-17 pM). MP alone had no effect (122+/-19, P<0.3). After an i.v. bolus of insulin the group receiving GH+MP had a significantly (P<0.007) higher level of circulating glucose compared with controls (6.5+/-0.3 mM vs 4.4+/-0.7 mM). Despite this, there were no differences in peripheral glucose uptake between the two groups. In conclusion this study shows that a combined administration of GH and MP decreases the potency by which insulin decreases circulating glucose levels, but that peripheral tissues are not primarily involved in this insulin resistance.


1993 ◽  
Vol 265 (6) ◽  
pp. H2137-H2141 ◽  
Author(s):  
M. Nakashima ◽  
P. M. Vanhoutte

The present study was designed to determine whether endothelin (ET) induces endothelium-dependent hyperpolarization in the isolated rat mesenteric artery and, if so, to identify the receptor subtype involved. Main superior mesenteric arteries of Wistar-Kyoto and spontaneously hypertensive rats were used for the measurement of electrical responses of smooth muscle cells, using glass microelectrode. In tissues with endothelium of both strains, ET-1 (10(-8) M) caused an initial transient hyperpolarization followed by a sustained depolarization. In tissues without endothelium, only depolarization was observed. ET-3 (10(-8) M) produced transient hyperpolarizations only in preparations with endothelium. There was no significant difference in maximal amplitude of hyperpolarization between the two strains. BQ-123 (selective ETA-receptor antagonist) blocked the depolarization to ET-1 but did not inhibit hyperpolarizing responses to either isopeptide. IRL-1620 (specific ETB-receptor agonist) produced transient membrane hyperpolarizations in tissues with endothelium. The hyperpolarizations induced by ET were not affected by NG-nitro-L-arginine. These data suggest that both ET-1 and ET-3 can cause endothelium-dependent hyperpolarization in the rat mesenteric artery and that the endothelial receptor involved may belong to ETB subtype.


Author(s):  
Tays Amanda Felisberto Gonçalves ◽  
Renildo Moura da Cunha ◽  
Dionatas Ulises de Oliveira Meneguetti ◽  
Marcio Roberto Viana Santos ◽  
José Maria Barbosa- Filho ◽  
...  

Aims: To evaluate the vasorelaxant effect induced by the essential oil of the leaves of O. duckei Vattimo (ODEO) and its main constituent, trans-caryophyllene, in rat superior mesenteric arteries. Methodology: Isolated rat superior mesenteric rings were suspended by cotton threads for isometric tension recordings in Tyrode’s solution at 37ºC, gassed with 95% O2 and 5% CO2 and different ODEO concentrations (0.1-300 μg/mL) or trans-caryophyllene (1-1000 μg/mL) were added cumulatively to the organ baths. Results: Vasorelaxant effect induced by the essential oil of Ocotea duckei leaves (ODEO) and its main constituent, trans-caryophyllene (60.54 %), was evaluated in this work. In intact isolated rat superior mesenteric rings ODEO (0.1-300 μg/mL, n=6) induced concentration-dependent relaxation of tonus induced by phenylephrine (10 µM) or K+-depolarizing solution (KCl 80 mM) (IC50=31±5, 5±0.4 µg/mL, respectively, n=6). The relaxations of phenylephrine-induced contractions were not significantly attenuated after removal of the vascular endothelium (IC50=25±5 µg/mL). ODEO antagonized the concentration-response curves to CaCl2 (10-6-3x10-2 M) and Bay K 8644 (10-10-3x10-6 M). Furthermore, in nominally without calcium solution, ODEO significantly inhibited, in a concentration-dependent manner, transient contractions induced by 10 µM phenylephrine or 20 µM caffeine. Trans-caryophyllene induced vasorelaxations, however, this effect was 18.6 times less potent when compared to ODEO-induced vasorelaxations. Conclusion: The relaxant effect induced by ODEO in rat superior mesenteric artery rings is endothelium-independent and seems to be related to both, inhibition of Ca2+ influx through L-type voltage-gated Ca2+-channels sensitive to dihydropyridines and inhibition of the calcium release from intracellular IP3-and caffeine-sensitive stores.


2018 ◽  
Vol 1 (3) ◽  
Author(s):  
Yi Zhang ◽  
Shuzhe Ding ◽  
Yi Sun

Objective In the current study, we aim to investigate whether 12-week treadmill exercise alleviates insulin resistance and muscle atrophy, and to explore whether MG53 along with IR/IRS/AKT/mTOR cascade play a role in the physiopathological changes of db/db mice. Methods 20 db/db mice and 20 age-matched non-diabetic m/m mice were assigned to 4 groups as MC (m/m control) group, ME (m/m exercise) group, DC (db/db control) group and DE (db/db exercise) group. After an intervention of treadmill exercise of moderate intensity for 12 weeks, glucose and insulin tolerance tests, insulin resistance index (HOMA-IR, homeostasis model assessment of insulin resistance) and lipid metabolic profile were determined using blood samples. Skeletal muscles were utilized for determination of cross-sectional area (CSA), protein level detection of MG53 and insulin signaling pathway. Results Compared with MC mice, the AUC (areas under curve) of IPGTT (intraperitoneal glucose tolerance test) and IPITT (intraperitoneal insulin tolerance test) as well as HOMA-IR were significantly increased, and lipid parameters (serum triglyceride and total cholesterol) increased significantly in DC group. The upregulation of MG53 protein in different skeletal muscles (quadriceps, gastrocnemius and soleus muscle) could be observed in DC mice. Phosphorylated proteins of IR-β (β subunit of insulin receptor), IRS1, AKT (protein kinase B), mTOR (mammalian target of rapamycin), p70S6k and S6 ribosomal protein after acute insulin stimulation were downregulated with significance, whereas no significant difference was found in total protein levels of IR-β and AKT except IRS1 in DC group. The results of AUC of IPGTT and IPITT, HOMA-IR and serum lipid parameters in DE group were significantly decreased compared with DC group. 12-week moderate exercise was sufficient to downregulate the expression of MG53 in skeletal muscles of diabetic db/db mice. In addition, treadmill exercise-induced improvement of insulin signal transduction and insulin-dependent protein synthesis may partially account for the heavier muscle mass and larger muscle size. Conclusions In summary, insulin resistance and muscle atrophy of diabetic db/db mice could be effectively attenuated by 12-week moderate treadmill exercise by regulating MG53, MG53-mediated ubiquitin-dependent degradation of IRS1 and insulin signaling transduction.


2021 ◽  
Author(s):  
Lirui Wei ◽  
Xuenan Zhao ◽  
Feng Guo ◽  
Fengjiao Huang ◽  
Yanyan Zhao ◽  
...  

Abstract BackgroundIn modern society, obesity has become a global problem with resulting in metabolic disorders and poses high risk for type 2 diabetes mellitus (T2DM). The glucagon-like peptide-1 (GLP-1) has been taken as an effective drug for the therapy of T2DM and obesity. In the present study, the regulatory roles and molecular mechanisms of miR-425-5p in GLP-1 secretion in high-fat diet (HFD)-induced diabetic mice were explored. MethodsOral glucose tolerance test and insulin tolerance test were performed to assess glucose metabolism and GLP-1 and LPS levels. Quantitative real time polymerase chain reaction (qRT-PCR) was employed to detect the expression of LPS, GLP-1, GLP-1 receptors, miR-425-5p, phosphatase and tensin homology (PTEN), proglucagon, p65 and β-catenin. Western blot was performed to determine the expression of proglucagon, p65, β-catenin and PTEN. ResultsThe results showed that plasma GLP-1 level was negatively correlated with plasma LPS level in HFD-fed mice, and miR-425-5p expression and LPS level were up-regulated in the ileal fluid compared with control groups. LPS injection boosted miR-425-5p expression in ileum. MiR-425-5p ameliorated glucose intolerance and insulin resistance in HFD-fed mice by increasing GLP-1 secretion. Furthermore, p65 protein level in the cytoplasmic and nuclear in the ileum of HFD-fed mice was increased compared with the control group. MiR-425-5p agomir elevated nuclear β-catenin protein level, but reduced PTEN protein level in HFD-fed mice compared with HFD-fed mice treated with the miR-425-5p antagomir. ConclusionsOur results suggest that miR-425-5p promotes GLP-1 secretion and improves glucose tolerance and insulin resistance in high-fat diet-fed mice.


2004 ◽  
Vol 287 (5) ◽  
pp. H2316-H2323 ◽  
Author(s):  
Youqin Cheng ◽  
Joseph Fomusi Ndisang ◽  
Guanghua Tang ◽  
Kun Cao ◽  
Rui Wang

Hydrogen sulfide (H2S) has been shown recently to function as an important gasotransmitter. The present study investigated the vascular effects of H2S, both exogenously applied and endogenously generated, on resistance mesenteric arteries of rats and the underlying mechanisms. Both H2S and NaHS evoked concentration-dependent relaxation of in vitro perfused rat mesenteric artery beds (MAB). The sensitivity of MAB to H2S (EC50, 25.2 ± 3.6 μM) was about fivefold higher than that of rat aortic tissues. Removal of endothelium or coapplication of charybdotoxin and apamin to endothelium-intact MAB significantly reduced the vasorelaxation effects of H2S. The H2S-induced relaxation of MAB was partially mediated by ATP-sensitive K+ (KATP) channel activity in vascular smooth muscle cells. Pinacidil (EC50, 1.7 ± 0.1 μM, n = 6) mimicked, but glibenclamide (10 μM, n = 6) suppressed, the vasorelaxant effect of H2S. KATP channel currents in isolated mesenteric artery smooth muscle cells were significantly augmented by H2S. l-Cysteine, a substrate of cystathionine-γ-lyase (CSE), at 1 mM increased endogenous H2S production by sixfold in rat mesenteric artery tissues and decreased contractility of MAB. dl-Propargylglycine (a blocker of CSE) at 10 μM abolished l-cysteine-dependent increase in H2S production and relaxation of MAB. Our results demonstrated a tissue-specific relaxant response of resistance arteries to H2S. The stimulation of KATP channels in vascular smooth muscle cells and charybdotoxin/apamin-sensitive K+ channels in vascular endothelium by H2S represents important cellular mechanisms for H2S effect on MAB. Our study also demonstrated that endogenous CSE can generate sufficient H2S from exogenous l-cysteine to cause vasodilation. Future studies are merited to investigate direct contribution of endogenous H2S to regulation of vascular tone.


2017 ◽  
Vol 312 (4) ◽  
pp. H791-H799 ◽  
Author(s):  
Laura V. Gonzalez Bosc ◽  
Jessica M. Osmond ◽  
Wieslawa K. Giermakowska ◽  
Carolyn E. Pace ◽  
Jennifer L. Riggs ◽  
...  

Sleep apnea is a risk factor for cardiovascular disease, and intermittent hypoxia (IH, 20 episodes/h of 5% O2-5% CO2 for 7 h/day) to mimic sleep apnea increases blood pressure and impairs hydrogen sulfide (H2S)-induced vasodilation in rats. The enzyme that produces H2S, cystathionine γ-lyase (CSE), is decreased in rat mesenteric artery endothelial cells (EC) following in vivo IH exposure. In silico analysis identified putative nuclear factor of activated T cell (NFAT) binding sites in the CSE promoter. Therefore, we hypothesized that IH exposure reduces Ca2+ concentration ([Ca2+]) activation of calcineurin/NFAT to lower CSE expression and impair vasodilation. In cultured rat aortic EC, inhibiting calcineurin with cyclosporine A reduced CSE mRNA, CSE protein, and luciferase activity driven by a full-length but not a truncated CSE promoter. In male rats exposed to sham or IH conditions for 2 wk, [Ca2+] in EC in small mesenteric arteries from IH rats was lower than in EC from sham rat arteries (Δfura 2 ratio of fluorescence at 340 to 380 nm from Ca2+ free: IH = 0.05 ± 0.02, sham = 0.17 ± 0.03, P < 0.05), and fewer EC were NFATc3 nuclear positive in IH rat arteries than in sham rat arteries (IH = 13 ± 3, sham = 59 ± 11%, P < 0.05). H2S production was also lower in mesenteric tissue from IH rats vs. sham rats. Endothelium-dependent vasodilation to acetylcholine (ACh) was lower in mesenteric arteries from IH rats than in arteries from sham rats, and inhibiting CSE with β-cyanoalanine diminished ACh-induced vasodilation in arteries from sham but not IH rats but did not affect dilation to the H2S donor NaHS. Thus, IH lowers EC [Ca2+], NFAT activity, CSE expression and activity, and H2S production while inhibiting NFAT activation lowers CSE expression. The observations that IH exposure decreases NFATc3 activation and CSE-dependent vasodilation support a role for NFAT in regulating endothelial H2S production. NEW & NOTEWORTHY This study identifies the calcium-regulated transcription factor nuclear factor of activated T cells as a novel regulator of cystathionine γ-lyase (CSE). This pathway is basally active in mesenteric artery endothelial cells, but, after exposure to intermittent hypoxia to mimic sleep apnea, nuclear factor of activated T cells c3 nuclear translocation and CSE expression are decreased, concomitant with decreased CSE-dependent vasodilation.


Sign in / Sign up

Export Citation Format

Share Document