scholarly journals Computational Drug Repositioning and Experimental Validation of Ivermectin in Treatment of Gastric Cancer

2021 ◽  
Vol 12 ◽  
Author(s):  
Hanne-Line Rabben ◽  
Gøran Troseth Andersen ◽  
Aleksandr Ianevski ◽  
Magnus Kringstad Olsen ◽  
Denis Kainov ◽  
...  

Objective: The aim of the present study was repositioning of ivermectin in treatment of gastric cancer (GC) by computational prediction based on gene expression profiles of human and mouse model of GC and validations with in silico, in vitro and in vivo approaches.Methods: Computational drug repositioning was performed using connectivity map (cMap) and data/pathway mining with the Ingenuity Knowledge Base. Tissue samples of GC were collected from 16 patients and 57 mice for gene expression profiling. Additional seven independent datasets of gene expression of human GC from the TCGA database were used for validation. In silico testing was performed by constructing interaction networks of ivermectin and the downstream effects in targeted signaling pathways. In vitro testing was carried out in human GC cell lines (MKN74 and KATO-III). In vivo testing was performed in a transgenic mouse model of GC (INS-GAS mice).Results: GC gene expression “signature” and data/pathway mining but not cMAP revealed nine molecular targets of ivermectin in both human and mouse GC associated with WNT/β-catenin signaling as well as cell proliferation pathways. In silico inhibition of the targets of ivermectin and concomitant activation of ivermectin led to the inhibition of WNT/β-catenin signaling pathway in “dose-depended” manner. In vitro, ivermectin inhibited cell proliferation in time- and concentration-depended manners, and cells were arrested in the G1 phase at IC50 and shifted to S phase arrest at >IC50. In vivo, ivermectin reduced the tumor size which was associated with inactivation of WNT/β-catenin signaling and cell proliferation pathways and activation of cell death signaling pathways.Conclusion: Ivermectin could be recognized as a repositioning candidate in treatment of gastric cancer.

Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3430
Author(s):  
Chifei Kang ◽  
Ran Rostoker ◽  
Sarit Ben-Shumel ◽  
Rola Rashed ◽  
James Andrew Duty ◽  
...  

TMEM176B is a member of the membrane spanning 4-domains (MS4) family of transmembrane proteins, and a putative ion channel that is expressed in immune cells and certain cancers. We aimed to understand the role of TMEM176B in cancer cell signaling, gene expression, cell proliferation, and migration in vitro, as well as tumor growth in vivo. We generated breast cancer cell lines with overexpressed and silenced TMEM176B, and a therapeutic antibody targeting TMEM176B. Proliferation and migration assays were performed in vitro, and tumor growth was evaluated in vivo. We performed gene expression and Western blot analyses to identify the most differentially regulated genes and signaling pathways in cells with TMEM176B overexpression and silencing. Silencing TMEM176B or inhibiting it with a therapeutic antibody impaired cell proliferation, while overexpression increased proliferation in vitro. Syngeneic and xenograft tumor studies revealed the attenuated growth of tumors with TMEM176B gene silencing compared with controls. We found that the AKT/mTOR signaling pathway was activated or repressed in cells overexpressing or silenced for TMEM176B, respectively. Overall, our results suggest that TMEM176B expression in breast cancer cells regulates key signaling pathways and genes that contribute to cancer cell growth and progression, and is a potential target for therapeutic antibodies.


2018 ◽  
Author(s):  
Ok-Seon Kwon ◽  
Haeseung Lee ◽  
Hyeon-Joon Kong ◽  
Ji Eun Park ◽  
Wooin Lee ◽  
...  

AbstractAlthough many molecular targets for cancer therapy have been discovered, they often show poor druggability, which is a major obstacle to develop targeted drugs. As an alternative route to drug discovery, we adopted anin silicodrug repositioning (in silicoDR) approach based on large-scale gene expression signatures, with the goal of identifying inhibitors of lung cancer metastasis. Our analysis of clinicogenomic data identified GALNT14, an enzyme involved in O-linked N-acetyl galactosamine glycosylation, as a putative driver of lung cancer metastasis leading to poor survival. To overcome the poor druggability of GALNT14, we leveraged Connectivity Map approach, anin silicoscreening for drugs that are likely to revert the metastatic expression patterns. It leads to identification of bortezomib (BTZ) as a potent metastatic inhibitor, bypassing direct inhibition of poorly druggable target, GALNT14. The anti-metastatic effect of BTZ was verifiedin vitroandin vivo. Notably, both BTZ treatment andGALNT14knockdown attenuated TGFβ-mediated gene expression and suppressed TGFβ-dependent metastatic genes, suggesting that BTZ acts by modulating TGFβ signalingTaken together, these results demonstrate that ourin silicoDR approach is a viable strategy to identify a candidate drug for undruggable targets, and to uncover its underlying mechanisms.


2021 ◽  
Author(s):  
Suzhen Yang ◽  
Jing Zhang ◽  
Di Chen ◽  
Jiayi Cao ◽  
Ying Zheng ◽  
...  

Abstract Background: The role of CARM1 in tumors is contradictory. It acts as an oncogene in most kinds of cancers while inhibits the progression of liver and pancreatic cancers. CARM1 has recently been reported to regulate autophagy, which is also context-dependent. However, the effect of CARM1 on gastric cancer has not been studied. We aimed to explore whether CARM1 was involved in the progression of gastric cancer by regulating autophagy.Methods: The clinical values of CARM1 and autophagy in gastric cancer were determined by immunohistochemistry and qRT-PCR. Transmission electron microscopy, immunofluorescence and western blotting were applied to recognize autophagy. The role of CARM1 in gastric cancer was investigated by CCK8, colony formation and flow cytometry assays in vitro and xenograft model in vivo. Immunoprecipitation assay was performed to illustrate the interaction of CARM1 and TFE3.Results: CARM1 was upregulated in clinical GC tissues and cell lines, and higher CARM1 expression predicted worse prognosis. CARM1 enhanced GC cell proliferation, facilitated G1-S transition and inhibited ER stress-induced apoptosis by regulating autophagy. Importantly, the treatment of CARM1 inhibitor rescued the tumor-promoting effects of CARM1 both in vitro and in vivo. Furthermore, we proved CARM1 heightened TFE3 nuclear translocation to induce autophagy via cytoplasmic AMPK-mTOR and nuclear CARM1-TFE3 signaling pathways.Conclusion: CARM1 promoted GC cell proliferation, accelerated G1-S transition and reduced ER stress-induced apoptosis by regulating autophagy. Mechanically, CARM1 triggered autophagy by facilitating TFE3 nuclear translocation via AMPK-mTOR and CARM1-TFE3 signaling pathways.


2021 ◽  
Vol 26 (1) ◽  
Author(s):  
An Yang ◽  
Xin Liu ◽  
Ping Liu ◽  
Yunzhang Feng ◽  
Hongbo Liu ◽  
...  

Abstract Background Long noncoding RNA (lncRNA), urothelial carcinoma-associated 1 (UCA1) is aberrantly expressed in multiple cancers and has been verified as an oncogene. However, the underlying mechanism of UCA1 in the development of gastric cancer is not fully understood. In the present study, we aimed to identify how UCA1 promotes gastric cancer development. Methods The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) data were used to analyze UCA1 and myosin VI (MYO6) expression in gastric cancer. Western blot and quantitative real-time PCR (QPCR) were performed to test the expression level of the UCA1/miR-145/MYO6 axis in gastric cancer cell lines and tissues. The roles of the UCA1/miR-145/MYO6 axis in gastric cancer in vitro and in vivo were investigated by CCK-8 assay, flow cytometry, siRNAs, immunohistochemistry, and a mouse xenograft model. The targeted relationship among UCA1, miR-145, and MYO6 was predicted using LncBase Predicted v.2 and TargetScan online software, and then verified by luciferase activity assay and RNA immunoprecipitation. Results UCA1 expression was higher but miR-145 expression was lower in gastric cancer cell lines or tissues, compared to the adjacent normal cell line or normal tissues. Function analysis verified that UCA1 promoted cell proliferation and inhibited cell apoptosis in the gastric cancer cells in vitro and in vivo. Mechanistically, UCA1 could bind directly to miR-145, and MYO6 was found to be a downstream target gene of miR-145. miR-145 mimics or MYO6 siRNAs could partly reverse the effect of UCA1 on gastric cancer cells. Conclusions UCA1 accelerated cell proliferation and inhibited cell apoptosis through sponging miR-145 to upregulate MYO6 expression in gastric cancer, indicating that the UCA1/miR-145/MYO6 axis may serve as a potential therapeutic target for gastric cancer.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Chao Hu ◽  
Xiaobin Zhu ◽  
Taogen Zhang ◽  
Zhouming Deng ◽  
Yuanlong Xie ◽  
...  

Introduction. Osteosarcoma is a malignant tumor associated with high mortality rates due to the toxic side effects of current therapeutic methods. Tanshinone IIA can inhibit cell proliferation and promote apoptosis in vitro, but the exact mechanism is still unknown. The aims of this study are to explore the antiosteosarcoma effect of tanshinone IIA via Src kinase and demonstrate the mechanism of this effect. Materials and Methods. Osteosarcoma MG-63 and U2-OS cell lines were stable transfections with Src-shRNA. Then, the antiosteosarcoma effect of tanshinone IIA was tested in vitro. The protein expression levels of Src, p-Src, p-ERK1/2, and p-AKt were detected by Western blot and RT-PCR. CCK-8 assay and BrdU immunofluorescence assay were used to detect cell proliferation. Transwell assay, cell scratch assay, and flow cytometry were used to detect cell invasion, migration, and cell cycle. Tumor-bearing nude mice with osteosarcoma were constructed. The effect of tanshinone IIA was detected by tumor HE staining, tumor inhibition rate, incidence of lung metastasis, and X-ray. Results. The oncogene role of Src kinase in osteosarcoma is reflected in promoting cell proliferation, invasion, and migration and in inhibiting apoptosis. However, Src has different effects on cell proliferation, apoptosis, and cell cycle regulation among cell lines. At a cellular level, the antiosteosarcoma effect of tanshinone IIA is mediated by Src downstream of the MAPK/ERK and PI3K/AKt signaling pathways. At the animal level, tanshinone IIA played a role in resisting osteosarcoma formation by Src downstream of the MAPK/ERK and PI3K/AKt signaling pathways. Conclusion. Tanshinone IIA plays an antiosteosarcoma role in vitro and in vivo and inhibits the progression of osteosarcoma mediated by Src downstream of the MAPK/ERK and PI3K/AKt signaling pathways.


2020 ◽  
Vol 64 (9) ◽  
Author(s):  
Letícia Tiburcio Ferreira ◽  
Juliana Rodrigues ◽  
Gustavo Capatti Cassiano ◽  
Tatyana Almeida Tavella ◽  
Kaira Cristina Peralis Tomaz ◽  
...  

ABSTRACT Widespread resistance against antimalarial drugs thwarts current efforts for controlling the disease and urges the discovery of new effective treatments. Drug repositioning is increasingly becoming an attractive strategy since it can reduce costs, risks, and time-to-market. Herein, we have used this strategy to identify novel antimalarial hits. We used a comparative in silico chemogenomics approach to select Plasmodium falciparum and Plasmodium vivax proteins as potential drug targets and analyzed them using a computer-assisted drug repositioning pipeline to identify approved drugs with potential antimalarial activity. Among the seven drugs identified as promising antimalarial candidates, the anthracycline epirubicin was selected for further experimental validation. Epirubicin was shown to be potent in vitro against sensitive and multidrug-resistant P. falciparum strains and P. vivax field isolates in the nanomolar range, as well as being effective against an in vivo murine model of Plasmodium yoelii. Transmission-blocking activity was observed for epirubicin in vitro and in vivo. Finally, using yeast-based haploinsufficiency chemical genomic profiling, we aimed to get insights into the mechanism of action of epirubicin. Beyond the target predicted in silico (a DNA gyrase in the apicoplast), functional assays suggested a GlcNac-1-P-transferase (GPT) enzyme as a potential target. Docking calculations predicted the binding mode of epirubicin with DNA gyrase and GPT proteins. Epirubicin is originally an antitumoral agent and presents associated toxicity. However, its antiplasmodial activity against not only P. falciparum but also P. vivax in different stages of the parasite life cycle supports the use of this drug as a scaffold for hit-to-lead optimization in malaria drug discovery.


2019 ◽  
Vol 129 (3) ◽  
pp. 245-255 ◽  
Author(s):  
Hyun Soo Kim ◽  
Byeong-Gon Kim ◽  
Sohyeon Park ◽  
Nahyun Kim ◽  
An-Soo Jang ◽  
...  

Objectives: Diesel exhaust particles (DEP)s are notorious ambient pollutants composed of a complex mixture of a carbon core and diverse chemical irritants. Several studies have demonstrated significant relationships between DEP exposure and serious nasal inflammatory response in vitro, but available information regarding underlying networks in terms of gene expression changes has not sufficiently explained potential mechanisms of DEP-induced nasal damage, especially in vivo. Methods: In the present study, we identified DEP-induced gene expression profiles under short-term and long-term exposure, and identified signaling pathways based on microarray data for understanding effects of DEP exposure in the mouse nasal cavity. Results: Alteration in gene expression due to DEP exposure provokes an imbalance of the immune system via dysregulated inflammatory markers, predicted to disrupt protective responses against harmful exogenous substances in the body. Several candidate markers were identified after validation using qRT-PCR, including S100A9, CAMP, IL20, and S100A8. Conclusions: Although further mechanistic studies are required for verifying the utility of the potential biomarkers suggested by the present study, our in vivo results may provide meaningful suggestions for understanding the complex cellular signaling pathways involved in DEP-induced nasal damages.


2019 ◽  
Vol 10 (11) ◽  
Author(s):  
Xuan Zhang ◽  
Yi Zhang ◽  
Zhongyuan He ◽  
Kai Yin ◽  
Bowen Li ◽  
...  

Abstract An increasing number of studies indicate that adrenergic signalling plays a fundamental role in chronic stress-induced tumour progression and metastasis. However, its function in gastric cancer (GC) and its potential mechanisms remain unknown. The expression levels of β-adrenergic receptor (ADRB) in GC cell lines were examined by using real-time polymerase chain reaction (RT-PCR) and western blotting. The effects of β2 adrenergic receptor (ADRB2) activation and blockade were investigated in vitro in GC cells by using proliferation, migration, invasion, cell cycle and apoptosis assays. Chronic restraint stress (CRS) increased the plasma levels of catecholamines and cortisol and also induced progression and metastasis of GC in vivo. Furthermore, immunohistochemical staining and a TUNEL assay were employed to observe the regulation of cell viability in vivo. The expression levels of ADRB2 in 100 human GC samples were measured by RT-PCR and immunohistochemistry. The stress hormones epinephrine and norepinephrine significantly accelerated GC cell proliferation, invasion and viability in culture, as well as tumour growth in vivo. These effects were reversed by the ADRB antagonists propranolol and ICI118,551 (an ADRB2-specific antagonist). Moreover, the selective ADRB1 antagonist atenolol had almost no effect on tumour cell proliferation and invasion in vitro and in vivo. ADRB2 antagonists suppressed proliferation, invasion and metastasis by inhibiting the ERK1/2-JNK-MAPK pathway and transcription factors, such as NF-κB, AP-1, CREB and STAT3. Analysis of xenograft models using GC cells revealed that ADRB2 antagonists significantly inhibited tumour growth and metastasis, and chronic stress antagonized these inhibitory effects. In addition, chronic stress increased the expression of VEGF, MMP-2, MMP-7 and MMP-9 in transplanted tumour tissue, and catecholamine hormones enhanced the expression of metastasis-related proteins. The expression of ADRB2 was upregulated in tumour tissues and positively correlated with tumour size, histological grade, lymph node metastasis and clinical stage in human GC samples. Stress hormone-induced activation of the ADRB2 signalling pathway plays a crucial role in GC progression and metastasis. These findings indicate that ADRB2 signalling regulates GC progression and suggest β2 blockade as a novel strategy to complement existing therapies for GC.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Yuzu Zhao ◽  
Jiang He ◽  
Yongsen Li ◽  
Man Xu ◽  
Xingzhi Peng ◽  
...  

PHF14 is a new member belonging to PHD finger proteins. PHF14 is involved in multiple biologic processes including Dandy–Walker syndrome, mesenchyme growth, lung fibrosis, renal fibrosis, persistent pulmonary hypertension, and tumor development. This study aims to explore whether PHF14 plays an important role in gastric cancer. Here, PHF14 is indicated as a tumor promoter. The expression of PHF14 enhances no matter in clinical samples or in gastric cancer cells. High expression of PHF14 impairs survival of patients. Attenuation of PHF14 inhibits cell proliferation in gastric cancer cells. PHF14 downregulation inhibits the expression of cell cycle-related proteins, CDK6 and cyclin D1. Furthermore, silencing of PHF14 reduces the level of phosphorylated AKT as well as phosphorylated ERK1/2. Finally, downregulation of PHF14 in gastric cancer cells inhibits colony formation in vitro and tumorigenesis in vivo. These results indicate that PHF14 promotes tumor development in gastric cancer, so PHF14 thereby acts as a potential target for gastric cancer therapy.


Sign in / Sign up

Export Citation Format

Share Document